These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26095586)

  • 1. UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection.
    Chen J; Zhou Y; Wang D; He F; Rotello VM; Carter KR; Watkins JJ; Nugen SR
    Lab Chip; 2015 Jul; 15(14):3086-94. PubMed ID: 26095586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An inkjet-printed electrowetting valve for paper-fluidic sensors.
    Koo CK; He F; Nugen SR
    Analyst; 2013 Sep; 138(17):4998-5004. PubMed ID: 23828822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet print microchannels based on a liquid template.
    Guo Y; Li L; Li F; Zhou H; Song Y
    Lab Chip; 2015 Apr; 15(7):1759-64. PubMed ID: 25686015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-Inkjet-Printed Flexible Nanobio-Devices with Efficient Electrochemical Coupling Using Amphiphilic Biomaterials.
    Kang TH; Lee SW; Hwang K; Shim W; Lee KY; Lim JA; Yu WR; Choi IS; Yi H
    ACS Appl Mater Interfaces; 2020 May; 12(21):24231-24241. PubMed ID: 32353230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.
    Hamad EM; Bilatto SE; Adly NY; Correa DS; Wolfrum B; Schöning MJ; Offenhäusser A; Yakushenko A
    Lab Chip; 2016 Jan; 16(1):70-4. PubMed ID: 26627046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing.
    Li J; Rossignol F; Macdonald J
    Lab Chip; 2015 Jun; 15(12):2538-58. PubMed ID: 25953427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices.
    Dossi N; Toniolo R; Pizzariello A; Impellizzieri F; Piccin E; Bontempelli G
    Electrophoresis; 2013 Jul; 34(14):2085-91. PubMed ID: 23161669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems.
    Wu J; Wang R; Yu H; Li G; Xu K; Tien NC; Roberts RC; Li D
    Lab Chip; 2015 Feb; 15(3):690-5. PubMed ID: 25412449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printable microfluidic systems using pressure sensitive adhesive material for biosensing devices.
    Wang X; Nilsson D; Norberg P
    Biochim Biophys Acta; 2013 Sep; 1830(9):4398-401. PubMed ID: 23220698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene derivative-based ink advances inkjet printing technology for fabrication of electrochemical sensors and biosensors.
    Nalepa MA; Panáček D; Dědek I; Jakubec P; Kupka V; Hrubý V; Petr M; Otyepka M
    Biosens Bioelectron; 2024 Jul; 256():116277. PubMed ID: 38613934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of inlaid electrodes for whole column electrochemical detection in HPLC.
    Seo JH; Leow PL; Cho SH; Lim HW; Kim JY; Patel BA; Park JG; O'Hare D
    Lab Chip; 2009 Aug; 9(15):2238-44. PubMed ID: 19606303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer.
    Pavinatto FJ; Paschoal CW; Arias AC
    Biosens Bioelectron; 2015 May; 67():553-9. PubMed ID: 25301685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically addressable single-use microfluidic valves by laser printer lithography.
    Garcia-Cordero JL; Kurzbuch D; Benito-Lopez F; Diamond D; Lee LP; Ricco AJ
    Lab Chip; 2010 Oct; 10(20):2680-7. PubMed ID: 20740236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobile phone based electrochemiluminescence detection in paper-based microfluidic sensors.
    Delaney JL; Hogan CF
    Methods Mol Biol; 2015; 1256():277-89. PubMed ID: 25626546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis.
    Wang C; Ouyang J; Gao HL; Chen HW; Xu JJ; Xia XH; Chen HY
    Talanta; 2011 Jul; 85(1):298-303. PubMed ID: 21645702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct writing electrodes using a ball pen for paper-based point-of-care testing.
    Li Z; Li F; Hu J; Wee WH; Han YL; Pingguan-Murphy B; Lu TJ; Xu F
    Analyst; 2015 Aug; 140(16):5526-35. PubMed ID: 26079757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoimprint lithography with a focused laser beam for the fabrication of nanopatterned microchannel molds.
    Lim H; Ryu J; Kim G; Choi KB; Lee S; Lee J
    Lab Chip; 2013 Aug; 13(16):3188-91. PubMed ID: 23793420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid paper and microfluidic chip with electrowetting valves and colorimetric detection.
    He F; Grimes J; Alcaine SD; Nugen SR
    Analyst; 2014 Jun; 139(12):3002-8. PubMed ID: 24719901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices.
    Godino N; Gorkin R; Bourke K; Ducrée J
    Lab Chip; 2012 Sep; 12(18):3281-4. PubMed ID: 22842728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eletrochemically actuated stop-go valves for capillary force-operated diagnostic microsystems.
    Washe AP; Lozano P; Bejarano D; Katakis I
    Chemphyschem; 2013 Jul; 14(10):2164-73. PubMed ID: 23592401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.