These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26095688)

  • 1. Fill factor in organic solar cells can exceed the Shockley-Queisser limit.
    Trukhanov VA; Bruevich VV; Paraschuk DY
    Sci Rep; 2015 Jun; 5():11478. PubMed ID: 26095688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells.
    Naveed HB; Zhou K; Ma W
    Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Over 15% Efficiency in Ternary Organic Solar Cells by Enhanced Charge Transport and Reduced Energy Loss.
    Wang H; Zhang Z; Yu J; Lin PC; Chueh CC; Liu X; Guang S; Qu S; Tang W
    ACS Appl Mater Interfaces; 2020 May; 12(19):21633-21640. PubMed ID: 32314906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferrocene-diketopyrrolopyrrole based small molecule donors for bulk heterojunction solar cells.
    Patil Y; Misra R; Singh MK; Sharma GD
    Phys Chem Chem Phys; 2017 Mar; 19(10):7262-7269. PubMed ID: 28239736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light intensity dependence of organic solar cell operation and dominance switching between Shockley-Read-Hall and bimolecular recombination losses.
    Ryu S; Ha NY; Ahn YH; Park JY; Lee S
    Sci Rep; 2021 Aug; 11(1):16781. PubMed ID: 34408249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal Efficiency Improvement in Organic Solar Cells Based on a Poly(3-hexylthiophene) Donor and an Indene-C60 Bisadduct Acceptor with Additional Donor Nanowires.
    Joe SY; Yim JH; Ryu SY; Ha NY; Ahn YH; Park JY; Lee S
    Chemphyschem; 2015 Apr; 16(6):1217-22. PubMed ID: 25760990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of High-Efficiency Multi-Junction Polymer and Hybrid Solar Cells to Absorb Infrared Light.
    Khanam JJ; Foo SY
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Side-Chain Effects on Energy-Level Modulation and Device Performance of Organic Semiconductor Acceptors in Organic Solar Cells.
    Luo Z; Zhao Y; Zhang ZG; Li G; Wu K; Xie D; Gao W; Li Y; Yang C
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34146-34152. PubMed ID: 28892350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conjugated Polymer-Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells.
    Zhang J; Zhang Y; Fang J; Lu K; Wang Z; Ma W; Wei Z
    J Am Chem Soc; 2015 Jul; 137(25):8176-83. PubMed ID: 26052738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells.
    Kyaw AK; Wang DH; Gupta V; Leong WL; Ke L; Bazan GC; Heeger AJ
    ACS Nano; 2013 May; 7(5):4569-77. PubMed ID: 23597037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-IR Absorbing D-A-D Zn-Porphyrin-Based Small-Molecule Donors for Organic Solar Cells with Low-Voltage Loss.
    Cuesta V; Singhal R; de la Cruz P; Sharma GD; Langa F
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7216-7225. PubMed ID: 30680994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy.
    An Q; Zhang F; Li L; Wang J; Sun Q; Zhang J; Tang W; Deng Z
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3691-8. PubMed ID: 25623199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the loss mechanisms in high-performance solution-processed small molecule bulk heterojunction solar cells doped with a PFN impurity.
    Aghassi A; Fay CD
    Phys Chem Chem Phys; 2019 Jun; 21(24):13176-13185. PubMed ID: 31173009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterojunction topology versus fill factor correlations in novel hybrid small-molecular/polymeric solar cells.
    Schubert M; Yin C; Castellani M; Bange S; Tam TL; Sellinger A; Hörhold HH; Kietzke T; Neher D
    J Chem Phys; 2009 Mar; 130(9):094703. PubMed ID: 19275414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical investigations on enhancing the performance of terminally diketopyrrolopyrrole-based small-molecular donors in organic solar cell applications.
    Liu X; Huang C; Shen W; He R; Li M
    J Mol Model; 2016 Jan; 22(1):15. PubMed ID: 26689703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photovoltaic devices and characterization of a dodecyloxybenzothiadiazole-based copolymer.
    Maharjan PP; Chen Q; Zhang L; Adebanjo O; Adhikari N; Venkatesan S; Adhikary P; Vaagensmith B; Qiao Q
    Phys Chem Chem Phys; 2013 May; 15(18):6856-63. PubMed ID: 23545704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Series circuit of organic thin-film solar cells for conversion of water into hydrogen.
    Aoki A; Naruse M; Abe T
    Chemphyschem; 2013 Jul; 14(10):2317-20. PubMed ID: 23671012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-junction polymer solar cells with over 10% efficiency by a novel two-dimensional donor-acceptor conjugated copolymer.
    Liu C; Yi C; Wang K; Yang Y; Bhatta RS; Tsige M; Xiao S; Gong X
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4928-35. PubMed ID: 25671670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple method to adjust the morphology of gradient three-dimensional PTB7-Th:PC71BM polymer solar cells.
    Zhao L; Zhao S; Xu Z; Yang Q; Huang D; Xu X
    Nanoscale; 2015 Mar; 7(12):5537-44. PubMed ID: 25739074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The generalized Shockley-Queisser limit for nanostructured solar cells.
    Xu Y; Gong T; Munday JN
    Sci Rep; 2015 Sep; 5():13536. PubMed ID: 26329479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.