These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26095691)

  • 1. Research highlights: surface-based microfluidic control.
    Adeyiga O; Kahkeshani S; Paiè P; Di Carlo D
    Lab Chip; 2015 Aug; 15(15):3107-10. PubMed ID: 26095691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterned cell culture inside microfluidic devices.
    Rhee SW; Taylor AM; Tu CH; Cribbs DH; Cotman CW; Jeon NL
    Lab Chip; 2005 Jan; 5(1):102-7. PubMed ID: 15616747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upgrading well plates using open microfluidic patterning.
    Berry SB; Zhang T; Day JH; Su X; Wilson IZ; Berthier E; Theberge AB
    Lab Chip; 2017 Dec; 17(24):4253-4264. PubMed ID: 29164190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface patterning strategies for microfluidic applications based on functionalized poly-p-xylylenes.
    Chen HY; Lahann J
    Bioanalysis; 2010 Oct; 2(10):1717-28. PubMed ID: 21083324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro- and nanometer-scale patterned surface in a microchannel for cell culture in microfluidic devices.
    Goto M; Tsukahara T; Sato K; Kitamori T
    Anal Bioanal Chem; 2008 Feb; 390(3):817-23. PubMed ID: 17653698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-demand droplet loading for automated organic chemistry on digital microfluidics.
    Shah GJ; Ding H; Sadeghi S; Chen S; Kim CJ; van Dam RM
    Lab Chip; 2013 Jul; 13(14):2785-95. PubMed ID: 23670035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Siphon-driven microfluidic passive pump with a yarn flow resistance controller.
    Jeong GS; Oh J; Kim SB; Dokmeci MR; Bae H; Lee SH; Khademhosseini A
    Lab Chip; 2014 Nov; 14(21):4213-9. PubMed ID: 25184743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics within a well: an injection-molded plastic array 3D culture platform.
    Lee Y; Choi JW; Yu J; Park D; Ha J; Son K; Lee S; Chung M; Kim HY; Jeon NL
    Lab Chip; 2018 Aug; 18(16):2433-2440. PubMed ID: 29999064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A palmtop-sized microfluidic cell culture system driven by a miniaturized infusion pump.
    Sasaki N; Shinjo M; Hirakawa S; Nishinaka M; Tanaka Y; Mawatari K; Kitamori T; Sato K
    Electrophoresis; 2012 Jul; 33(12):1729-35. PubMed ID: 22740461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of static incubation time in microfluidic cell culture platforms exploiting extended air-liquid interface.
    Bose N; Das T; Chakraborty D; Maiti TK; Chakraborty S
    Lab Chip; 2012 Jan; 12(1):69-73. PubMed ID: 22076598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the surface properties of microfluidic stickers.
    Levaché B; Azioune A; Bourrel M; Studer V; Bartolo D
    Lab Chip; 2012 Sep; 12(17):3028-31. PubMed ID: 22855124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform.
    Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J
    Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated cell culture in high density tubeless microfluidic device arrays.
    Meyvantsson I; Warrick JW; Hayes S; Skoien A; Beebe DJ
    Lab Chip; 2008 May; 8(5):717-24. PubMed ID: 18432341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A vertical microfluidic probe.
    Kaigala GV; Lovchik RD; Drechsler U; Delamarche E
    Langmuir; 2011 May; 27(9):5686-93. PubMed ID: 21476506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering microscale cellular niches for three-dimensional multicellular co-cultures.
    Huang CP; Lu J; Seon H; Lee AP; Flanagan LA; Kim HY; Putnam AJ; Jeon NL
    Lab Chip; 2009 Jun; 9(12):1740-8. PubMed ID: 19495458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated, controlled deposition of nanoparticles on polyelectrolyte-coated silicon from chemomechanically patterned droplet arrays.
    Owen JI; Niederhauser TL; Wacaser BA; Christenson MP; Davis RC; Linford MR
    Lab Chip; 2004 Dec; 4(6):553-7. PubMed ID: 15570364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computer-controlled apparatus for micrometric drop deposition at liquid surfaces.
    Peña-Polo F; Trujillo L; Sigalotti LD
    Rev Sci Instrum; 2010 May; 81(5):055107. PubMed ID: 20515172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microvalve-assisted patterning platform for measuring cellular dynamics based on 3D cell culture.
    Kim MS; Lee W; Kim YC; Park JK
    Biotechnol Bioeng; 2008 Dec; 101(5):1005-13. PubMed ID: 18942775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.