These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26095718)

  • 1. High-Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet with Multiple Functional Inks.
    An BW; Kim K; Lee H; Kim SY; Shim Y; Lee DY; Song JY; Park JU
    Adv Mater; 2015 Aug; 27(29):4322-8. PubMed ID: 26095718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating.
    Zhang B; Seong B; Lee J; Nguyen V; Cho D; Byun D
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29965-29972. PubMed ID: 28806052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution, Transparent, and Flexible Printing of Polydimethylsiloxane via Electrohydrodynamic Jet Printing for Conductive Electronic Device Applications.
    Hassan RU; Khalil SM; Khan SA; Ali S; Moon J; Cho DH; Byun D
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet-Based Techniques for Printing of Functional Inks for Flexible Physical Sensors.
    Abdolmaleki H; Kidmose P; Agarwala S
    Adv Mater; 2021 May; 33(20):e2006792. PubMed ID: 33772919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-Sensing Inks Using Electrohydrodynamic Inkjet Printing Technology.
    Ahn JH; Hong HJ; Lee CY
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance.
    Kim SY; Kim K; Hwang YH; Park J; Jang J; Nam Y; Kang Y; Kim M; Park HJ; Lee Z; Choi J; Kim Y; Jeong S; Bae BS; Park JU
    Nanoscale; 2016 Oct; 8(39):17113-17121. PubMed ID: 27722626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct printing of reduced graphene oxide on planar or highly curved surfaces with high resolutions using electrohydrodynamics.
    An BW; Kim K; Kim M; Kim SY; Hur SH; Park JU
    Small; 2015 May; 11(19):2263-8. PubMed ID: 25604108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation of spinel based inkjet inks for protective layer coatings in SOFC interconnects.
    Pandiyan S; El-Kharouf A; Steinberger-Wilckens R
    J Colloid Interface Sci; 2020 Nov; 579():82-95. PubMed ID: 32574731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications.
    Tran TS; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2018 Nov; 261():41-61. PubMed ID: 30318342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet-Printed High-Performance Flexible Micro-Supercapacitors with Porous Nanofiber-Like Electrode Structures.
    Cheng T; Wu YW; Chen YL; Zhang YZ; Lai WY; Huang W
    Small; 2019 Aug; 15(34):e1901830. PubMed ID: 31293068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Inkjet Printing of Aqueous Inks to Flexible All-Solid-State Graphene Hybrid Micro-Supercapacitors.
    Li B; Hu N; Su Y; Yang Z; Shao F; Li G; Zhang C; Zhang Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46044-46053. PubMed ID: 31718126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.
    Secor EB; Hersam MC
    J Phys Chem Lett; 2015 Feb; 6(4):620-6. PubMed ID: 26262476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability Bounds for Micron Scale Ag Conductor Lines Produced by Electrohydrodynamic Inkjet Printing.
    Yang J; He P; Derby B
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39601-39609. PubMed ID: 35979913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size.
    Mavuri A; Mayes AG; Alexander MS
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution electrohydrodynamic jet printing.
    Park JU; Hardy M; Kang SJ; Barton K; Adair K; Mukhopadhyay DK; Lee CY; Strano MS; Alleyne AG; Georgiadis JG; Ferreira PM; Rogers JA
    Nat Mater; 2007 Oct; 6(10):782-9. PubMed ID: 17676047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of nanoscale nozzle for electrohydrodynamic (EHD) inkjet head and high precision patterning by drop-on-demand operation.
    Nguyen VD; Schrlau MG; Tran SB; Bau HH; Ko HS; Byun D
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7298-302. PubMed ID: 19908776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics.
    Secor EB; Ahn BY; Gao TZ; Lewis JA; Hersam MC
    Adv Mater; 2015 Nov; 27(42):6683-8. PubMed ID: 26422363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enabling Free-Standing 3D Hydrogel Microstructures with Microreactive Inkjet Printing.
    Teo MY; Kee S; RaviChandran N; Stuart L; Aw KC; Stringer J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1832-1839. PubMed ID: 31820627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
    Lee S; Kim JH; Wajahat M; Jeong H; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18918-18924. PubMed ID: 28541035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inkjet Printing of Reactive Silver Ink on Textiles.
    Shahariar H; Kim I; Soewardiman H; Jur JS
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6208-6216. PubMed ID: 30644708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.