These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26095853)

  • 1. The unprecedented J-aggregate formation of rhodamine moieties induced by 9-phenylanthracenyl substitution.
    Kim S; Fujitsuka M; Tohnai N; Tachikawa T; Hisaki I; Miyata M; Majima T
    Chem Commun (Camb); 2015 Jul; 51(58):11580-11583. PubMed ID: 26095853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom.
    Fu M; Xiao Y; Qian X; Zhao D; Xu Y
    Chem Commun (Camb); 2008 Apr; (15):1780-2. PubMed ID: 18379691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general approach to spirolactonized Si-rhodamines.
    Wang B; Chai X; Zhu W; Wang T; Wu Q
    Chem Commun (Camb); 2014 Nov; 50(92):14374-7. PubMed ID: 25298124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast-response and highly specific Si-Rhodamine probe for endogenous peroxynitrite detection in living cells.
    Tang J; Li Q; Guo Z; Zhu W
    Org Biomol Chem; 2019 Feb; 17(7):1875-1880. PubMed ID: 30123908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aminobenzofuran-fused rhodamine dyes with deep-red to near-infrared emission for biological applications.
    Niu G; Liu W; Wu J; Zhou B; Chen J; Zhang H; Ge J; Wang Y; Xu H; Wang P
    J Org Chem; 2015 Mar; 80(6):3170-5. PubMed ID: 25692322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric Si-rhodamine scaffolds: rational design of pH-durable protease-activated NIR probes in vivo.
    Li M; Wang C; Wang T; Fan M; Wang N; Ma D; Hu T; Cui X
    Chem Commun (Camb); 2020 Feb; 56(16):2455-2458. PubMed ID: 31996872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes.
    Sun YQ; Liu J; Lv X; Liu Y; Zhao Y; Guo W
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7634-6. PubMed ID: 22674799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodamine-based chemosensor for Hg(2+) in aqueous solution with a broad pH range and its application in live cell imaging.
    Zhao Y; Sun Y; Lv X; Liu Y; Chen M; Guo W
    Org Biomol Chem; 2010 Sep; 8(18):4143-7. PubMed ID: 20652184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon Rhodamine-Based Near-Infrared Fluorescent Probe for γ-Glutamyltransferase.
    Iwatate RJ; Kamiya M; Umezawa K; Kashima H; Nakadate M; Kojima R; Urano Y
    Bioconjug Chem; 2018 Feb; 29(2):241-244. PubMed ID: 29323873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rhodamine-based fluorescent probe for detecting Hg(2+) in a fully aqueous environment.
    Chen X; Meng X; Wang S; Cai Y; Wu Y; Feng Y; Zhu M; Guo Q
    Dalton Trans; 2013 Oct; 42(41):14819-25. PubMed ID: 23986178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon Substitution in Oxazine Dyes Yields Near-Infrared Azasiline Fluorophores That Absorb and Emit beyond 700 nm.
    Choi A; Miller SC
    Org Lett; 2018 Aug; 20(15):4482-4485. PubMed ID: 30014702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Infrared Phosphorus-Substituted Rhodamine with Emission Wavelength above 700 nm for Bioimaging.
    Chai X; Cui X; Wang B; Yang F; Cai Y; Wu Q; Wang T
    Chemistry; 2015 Nov; 21(47):16754-8. PubMed ID: 26420515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodamine-based 'turn-on' fluorescent probe for Cu(II) and its fluorescence imaging in living cells.
    Tian MZ; Hu MM; Fan JL; Peng XJ; Wang JY; Sun SG; Zhang R
    Bioorg Med Chem Lett; 2013 May; 23(10):2916-9. PubMed ID: 23570786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray crystallographic and photophysical properties of rhodamine-based chemosensor for Fe3+.
    Zhang L; Fan J; Peng X
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(2):398-402. PubMed ID: 19345607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodamine-based fluorescent off-on sensor for Fe3+--in aqueous solution and in living cells: 8-aminoquinoline receptor and 2:1 binding.
    Huang J; Xu Y; Qian X
    Dalton Trans; 2014 Apr; 43(16):5983-9. PubMed ID: 24442254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of surfactants on the molecular aggregation of rhodamine dyes in aqueous solutions.
    Tajalli H; Ghanadzadeh Gilani A; Zakerhamidi MS; Moghadam M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):697-702. PubMed ID: 19147398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new fluorescent probe for Al(3+) based on rhodamine 6G and its application to bioimaging.
    Fu Y; Jiang XJ; Zhu YY; Zhou BJ; Zang SQ; Tang MS; Zhang HY; Mak TC
    Dalton Trans; 2014 Sep; 43(33):12624-32. PubMed ID: 25007919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fashioning Prussian Blue Nanoparticles by Adsorption of Luminophores: Synthesis, Properties, and
    Mamontova E; Daurat M; Long J; Godefroy A; Salles F; Guari Y; Gary-Bobo M; Larionova J
    Inorg Chem; 2020 Apr; 59(7):4567-4575. PubMed ID: 32149510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatoma-selective imaging of heavy metal ions using a 'clicked' galactosylrhodamine probe.
    Li KB; Zang Y; Wang H; Li J; Chen GR; James TD; He XP; Tian H
    Chem Commun (Camb); 2014 Oct; 50(79):11735-7. PubMed ID: 25144660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red fluorescent scaffold for highly sensitive protease activity probes.
    Kushida Y; Hanaoka K; Komatsu T; Terai T; Ueno T; Yoshida K; Uchiyama M; Nagano T
    Bioorg Med Chem Lett; 2012 Jun; 22(12):3908-11. PubMed ID: 22607681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.