These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 26096080)

  • 1. Wavelet-based regularity analysis reveals recurrent spatiotemporal behavior in resting-state fMRI.
    Smith RX; Jann K; Ances B; Wang DJ
    Hum Brain Mapp; 2015 Sep; 36(9):3603-20. PubMed ID: 26096080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple time scale complexity analysis of resting state FMRI.
    Smith RX; Yan L; Wang DJ
    Brain Imaging Behav; 2014 Jun; 8(2):284-91. PubMed ID: 24242271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting the potential of three dimensional spatial wavelet analysis to explore nesting of temporal oscillations and spatial variance in simultaneous EEG-fMRI data.
    Schultze-Kraft M; Becker R; Breakspear M; Ritter P
    Prog Biophys Mol Biol; 2011 Mar; 105(1-2):67-79. PubMed ID: 21094179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-wavelet transform for multi-subject resting state functional magnetic resonance imaging data.
    Zhou M; Boyd BD; Taylor WD; Kang H
    Stat Med; 2021 Dec; 40(30):6762-6776. PubMed ID: 34596260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-wavelet transform for multisubject task-induced functional magnetic resonance imaging data.
    Zhou M; Badre D; Kang H
    Biometrics; 2019 Sep; 75(3):1029-1040. PubMed ID: 30985916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.
    Suk HI; Wee CY; Lee SW; Shen D
    Neuroimage; 2016 Apr; 129():292-307. PubMed ID: 26774612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating univariate temporal patterns for intrinsic connectivity networks based on complexity and low-frequency oscillation: a test-retest reliability study.
    Wang X; Jiao Y; Tang T; Wang H; Lu Z
    Neuroscience; 2013 Dec; 254():404-26. PubMed ID: 24042040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity.
    Amemiya S; Takao H; Hanaoka S; Ohtomo K
    Neuroimage; 2016 Jun; 133():331-340. PubMed ID: 27012499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-frequency dynamics of resting-state brain connectivity measured with fMRI.
    Chang C; Glover GH
    Neuroimage; 2010 Mar; 50(1):81-98. PubMed ID: 20006716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination.
    Shirer WR; Jiang H; Price CM; Ng B; Greicius MD
    Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.
    Gupta L; Jansen JFA; Hofman PAM; Besseling RMH; de Louw AJA; Aldenkamp AP; Backes WH
    J Magn Reson Imaging; 2017 Dec; 46(6):1728-1737. PubMed ID: 28295824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complexity organization of resting-state functional-MRI networks.
    Trevino G; Lee JJ; Shimony JS; Luckett PH; Leuthardt EC
    Hum Brain Mapp; 2024 Aug; 45(12):e26809. PubMed ID: 39185729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferumoxytol enhanced resting state fMRI and relative cerebral blood volume mapping in normal human brain.
    D'Arceuil H; Coimbra A; Triano P; Dougherty M; Mello J; Moseley M; Glover G; Lansberg M; Blankenberg F
    Neuroimage; 2013 Dec; 83():200-9. PubMed ID: 23831413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
    Wee CY; Yang S; Yap PT; Shen D;
    Brain Imaging Behav; 2016 Jun; 10(2):342-56. PubMed ID: 26123390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy approximate entropy analysis of resting state fMRI signal complexity across the adult life span.
    Sokunbi MO; Cameron GG; Ahearn TS; Murray AD; Staff RT
    Med Eng Phys; 2015 Nov; 37(11):1082-90. PubMed ID: 26475494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved wavelet entropy calculation with window functions and its preliminary application to study intracranial pressure.
    Xu P; Hu X; Yao D
    Comput Biol Med; 2013 Jun; 43(5):425-33. PubMed ID: 23566389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the fMRI Signal Fluctuation with Recurrent Neural Networks Trained on Vascular Network Dynamics.
    Sobczak F; He Y; Sejnowski TJ; Yu X
    Cereb Cortex; 2021 Jan; 31(2):826-844. PubMed ID: 32940658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.