These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26096342)

  • 1. A Tetraferrocenyl-Resorcinarene Cavitand as a Redox-Switchable Host of Ammonium Salts.
    Ruiz-Botella S; Vidossich P; Ujaque G; Vicent C; Peris E
    Chemistry; 2015 Jul; 21(29):10558-65. PubMed ID: 26096342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Diederich F
    Acc Chem Res; 2014 Jul; 47(7):2096-105. PubMed ID: 24814219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rim, Side Arms, and Cavity: Three Sites for the Recognition of Anions by Tetraazolium Resorcinarene Cavitands.
    Ruiz-Botella S; Vidossich P; Ujaque G; Peris E
    Chemistry; 2016 Oct; 22(44):15800-15806. PubMed ID: 27717045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axial binding and host-guest interactions of a phthalocyanine resorcinarene cavitand hybrid.
    Topkaya D; Dumoulin F; Ahsen V; Işci Ü
    Dalton Trans; 2014 Feb; 43(5):2032-7. PubMed ID: 24276488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anion binding by a tetradipicolylamine-substituted resorcinarene cavitand.
    Gardner JS; Conda-Sheridan M; Smith DN; Harrison RG; Lamb JD
    Inorg Chem; 2005 Jun; 44(12):4295-300. PubMed ID: 15934759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the conformational freedom of the skeleton in the complex formation ability of resorcinarene derivatives toward a neutral phenol guest.
    Kunsági-Máté S; Csók Z; Iwata K; Szász E; Kollár L
    J Phys Chem B; 2011 Apr; 115(13):3339-43. PubMed ID: 21405094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of a water-soluble resorcinarene cavitand at the water-phosphocholine micelle interface.
    Javor S; Rebek J
    J Am Chem Soc; 2011 Nov; 133(43):17473-8. PubMed ID: 21910438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resorcinarene-based cavitands with chiral amino acid substituents for chiral amine recognition.
    Li N; Yang F; Stock HA; Dearden DV; Lamb JD; Harrison RG
    Org Biomol Chem; 2012 Sep; 10(36):7392-401. PubMed ID: 22865201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorinated Tetraphosphonate Cavitands.
    Pedrini A; Bertani F; Dalcanale E
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30336589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diastereoselective formation of host-guest complexes between a series of phosphate-bridged cavitands and alkyl- and arylammonium ions studied by liquid secondary-ion mass spectrometry.
    Irico A; Vincenti M; Dalcanale E
    Chemistry; 2001 May; 7(9):2034-42. PubMed ID: 11405483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of hydrogen-bond acceptors for redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Milić J; Kolarski D; Gropp C; Schweizer WB; Diederich F
    J Am Chem Soc; 2014 Mar; 136(10):3852-8. PubMed ID: 24568570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-bond and metal-ligand coordination bond hybrid supramolecular capsules: identification of hemicapsular intermediate and dual control of guest exchange dynamics.
    Nito Y; Adachi H; Toyoda N; Takaya H; Kobayashi K; Yamanaka M
    Chem Asian J; 2014 Apr; 9(4):1076-82. PubMed ID: 24501041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective binding affinity between quaternary ammonium cations and water-soluble calix[4]resorcinarene.
    Hong M; Zhang YM; Liu Y
    J Org Chem; 2015 Feb; 80(3):1849-55. PubMed ID: 25584396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of N-alkyl and N-aryl acetamides by N-alkyl ammonium resorcinarene chlorides.
    Beyeh NK; Ala-Korpi A; Cetina M; Valkonen A; Rissanen K
    Chemistry; 2014 Nov; 20(46):15144-50. PubMed ID: 25257765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation of ferrocene and peripheral electrostatic attachment of viologens to dimeric molecular capsules formed by an octaacid, deep-cavity cavitand.
    Podkoscielny D; Philip I; Gibb CL; Gibb BC; Kaifer AE
    Chemistry; 2008; 14(15):4704-10. PubMed ID: 18381714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion-pair complexation with a cavitand receptor.
    Tancini F; Gottschalk T; Schweizer WB; Diederich F; Dalcanale E
    Chemistry; 2010 Jul; 16(26):7813-9. PubMed ID: 20540049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Resorcinarene Cavitand-Based CMP(O) Cation Ligands: Synthesis and Extraction Properties.
    Boerrigter H; Verboom W; Reinhoudt DN
    J Org Chem; 1997 Oct; 62(21):7148-7155. PubMed ID: 11671819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative Binding of Divalent Diamides by N-Alkyl Ammonium Resorcinarene Chlorides.
    Beyeh NK; Ala-Korpi A; Pan F; Jo HH; Anslyn EV; Rissanen K
    Chemistry; 2015 Jun; 21(26):9556-62. PubMed ID: 26014834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in the Applications of Water-soluble Resorcinarene-based Deep Cavitands.
    Zhu YJ; Zhao MK; Rebek J; Yu Y
    ChemistryOpen; 2022 Jun; 11(6):e202200026. PubMed ID: 35701378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resorcinarene bis-thiacrowns: prospective host molecules for silver encapsulation.
    Salorinne K; Nauha E; Nissinen M
    Chem Asian J; 2012 Apr; 7(4):809-17. PubMed ID: 22311655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.