These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26096455)

  • 61. Computational studies of human class V alcohol dehydrogenase - the odd sibling.
    Östberg LJ; Persson B; Höög JO
    BMC Biochem; 2016 Jul; 17(1):16. PubMed ID: 27455956
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An engineered old yellow enzyme that enables efficient synthesis of (4R,6R)-Actinol in a one-pot reduction system.
    Horita S; Kataoka M; Kitamura N; Nakagawa T; Miyakawa T; Ohtsuka J; Nagata K; Shimizu S; Tanokura M
    Chembiochem; 2015 Feb; 16(3):440-5. PubMed ID: 25639703
    [TBL] [Abstract][Full Text] [Related]  

  • 63. X-ray structure of human class IV sigmasigma alcohol dehydrogenase. Structural basis for substrate specificity.
    Xie P; Parsons SH; Speckhard DC; Bosron WF; Hurley TD
    J Biol Chem; 1997 Jul; 272(30):18558-63. PubMed ID: 9228021
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Yeast alcohol dehydrogenase structure and catalysis.
    Raj SB; Ramaswamy S; Plapp BV
    Biochemistry; 2014 Sep; 53(36):5791-803. PubMed ID: 25157460
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Candida parapsilosis: A versatile biocatalyst for organic oxidation-reduction reactions.
    Chadha A; Venkataraman S; Preetha R; Padhi SK
    Bioorg Chem; 2016 Oct; 68():187-213. PubMed ID: 27544073
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Engineering substrate specificity of succinic semialdehyde reductase (AKR7A5) for efficient conversion of levulinic acid to 4-hydroxyvaleric acid.
    Yeon YJ; Park HY; Yoo YJ
    J Biotechnol; 2015 Sep; 210():38-43. PubMed ID: 26113216
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Candida tenuis xylose reductase catalysed reduction of acetophenones: the effect of ring-substituents on catalytic efficiency.
    Vogl M; Kratzer R; Nidetzky B; Brecker L
    Org Biomol Chem; 2011 Aug; 9(16):5863-70. PubMed ID: 21727980
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Stability and activity of alcohol dehydrogenases in W/O-microemulsions: enantioselective reduction including cofactor regeneration.
    Orlich B; Berger H; Lade M; Schomäcker R
    Biotechnol Bioeng; 2000 Dec; 70(6):638-46. PubMed ID: 11064332
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Directed Evolution of Alcohol Dehydrogenase for Improved Stereoselective Redox Transformations of 1-Phenylethane-1,2-diol and Its Corresponding Acyloin.
    Hamnevik E; Maurer D; Enugala TR; Chu T; Löfgren R; Dobritzsch D; Widersten M
    Biochemistry; 2018 Feb; 57(7):1059-1062. PubMed ID: 29384657
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-'A' from Rhodococcus ruber DSM 44541.
    Karabec M; Łyskowski A; Tauber KC; Steinkellner G; Kroutil W; Grogan G; Gruber K
    Chem Commun (Camb); 2010 Sep; 46(34):6314-6. PubMed ID: 20676439
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optimization of Alcohol Dehydrogenase for Industrial Scale Oxidation of Lactols.
    Bartsch S; Brummund J; Köpke S; Straatman H; Vogel A; Schürmann M
    Biotechnol J; 2020 Nov; 15(11):e2000171. PubMed ID: 32846049
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Inversion of cpADH5 Enantiopreference and Altered Chain Length Specificity for Methyl 3-Hydroxyalkanoates.
    Ensari Y; Dhoke GV; Davari MD; Bocola M; Ruff AJ; Schwaneberg U
    Chemistry; 2017 Sep; 23(51):12636-12645. PubMed ID: 28727189
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Role of conserved glycine in zinc-dependent medium chain dehydrogenase/reductase superfamily.
    Tiwari MK; Singh RK; Singh R; Jeya M; Zhao H; Lee JK
    J Biol Chem; 2012 Jun; 287(23):19429-39. PubMed ID: 22500022
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional Classification of Super-Large Families of Enzymes Based on Substrate Binding Pocket Residues for Biocatalysis and Enzyme Engineering Applications.
    Sirota FL; Maurer-Stroh S; Li Z; Eisenhaber F; Eisenhaber B
    Front Bioeng Biotechnol; 2021; 9():701120. PubMed ID: 34409021
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Substrate and water adsorption phenomena in a gas/solid enzymatic reactor.
    Dimoula K; Pohl M; Büchs J; Spiess AC
    Biotechnol J; 2009 May; 4(5):712-21. PubMed ID: 19418473
    [TBL] [Abstract][Full Text] [Related]  

  • 76. MDR-alcohol dehydrogenases.
    Jörnvall H
    Chem Biol Interact; 2017 Oct; 276():75-76. PubMed ID: 27908777
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Efficient synthesis of bepotastine and cloperastine intermediates using engineered alcohol dehydrogenase with a hydrophobic pocket.
    Wu K; Yan J; Wang X; Yin X; Shi G; Yang L; Li F; Huang J; Shao L
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5873-5882. PubMed ID: 34342711
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Industrial light at the end of the iron-containing (group III) alcohol dehydrogenase tunnel.
    Shanbhag AP; Ghatak A; Rajagopal S
    Biotechnol Appl Biochem; 2023 Apr; 70(2):537-552. PubMed ID: 35751426
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biocatalytic Properties and Structural Analysis of Phloroglucinol Reductases.
    Conradt D; Hermann B; Gerhardt S; Einsle O; Müller M
    Angew Chem Int Ed Engl; 2016 Dec; 55(50):15531-15534. PubMed ID: 27874239
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering.
    Aalbers FS; Fürst MJ; Rovida S; Trajkovic M; Gómez Castellanos JR; Bartsch S; Vogel A; Mattevi A; Fraaije MW
    Elife; 2020 Mar; 9():. PubMed ID: 32228861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.