BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 26096587)

  • 21. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes.
    Gregis V; Sessa A; Dorca-Fornell C; Kater MM
    Plant J; 2009 Nov; 60(4):626-37. PubMed ID: 19656343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Regulation network and biological roles of LEAFY in Arabidopsis thaliana in floral development].
    Wang LL; Liang HM; Pang JL; Zhu MY
    Yi Chuan; 2004 Jan; 26(1):137-42. PubMed ID: 15626683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conservation vs divergence in LEAFY and APETALA1 functions between Arabidopsis thaliana and Cardamine hirsuta.
    Monniaux M; McKim SM; Cartolano M; Thévenon E; Parcy F; Tsiantis M; Hay A
    New Phytol; 2017 Oct; 216(2):549-561. PubMed ID: 28098947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of the Arabidopsis B class homeotic genes by APETALA1.
    Ng M; Yanofsky MF
    Plant Cell; 2001 Apr; 13(4):739-53. PubMed ID: 11283333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development.
    Pajoro A; Madrigal P; Muiño JM; Matus JT; Jin J; Mecchia MA; Debernardi JM; Palatnik JF; Balazadeh S; Arif M; Ó'Maoiléidigh DS; Wellmer F; Krajewski P; Riechmann JL; Angenent GC; Kaufmann K
    Genome Biol; 2014 Mar; 15(3):R41. PubMed ID: 24581456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of flowering pathway integrators in Arabidopsis.
    Moon J; Lee H; Kim M; Lee I
    Plant Cell Physiol; 2005 Feb; 46(2):292-9. PubMed ID: 15695467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The poetry of reproduction: the role of LEAFY in Arabidopsis thaliana flower formation.
    Siriwardana NS; Lamb RS
    Int J Dev Biol; 2012; 56(4):207-21. PubMed ID: 22451042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive interaction map of the Arabidopsis MADS Box transcription factors.
    de Folter S; Immink RG; Kieffer M; Parenicová L; Henz SR; Weigel D; Busscher M; Kooiker M; Colombo L; Kater MM; Davies B; Angenent GC
    Plant Cell; 2005 May; 17(5):1424-33. PubMed ID: 15805477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A molecular framework for auxin-mediated initiation of flower primordia.
    Yamaguchi N; Wu MF; Winter CM; Berns MC; Nole-Wilson S; Yamaguchi A; Coupland G; Krizek BA; Wagner D
    Dev Cell; 2013 Feb; 24(3):271-82. PubMed ID: 23375585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SKIP Interacts with the Paf1 Complex to Regulate Flowering via the Activation of FLC Transcription in Arabidopsis.
    Cao Y; Wen L; Wang Z; Ma L
    Mol Plant; 2015 Dec; 8(12):1816-9. PubMed ID: 26384244
    [No Abstract]   [Full Text] [Related]  

  • 31. Regulation and function of SOC1, a flowering pathway integrator.
    Lee J; Lee I
    J Exp Bot; 2010 May; 61(9):2247-54. PubMed ID: 20413527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.
    Chae E; Tan QK; Hill TA; Irish VF
    Development; 2008 Apr; 135(7):1235-45. PubMed ID: 18287201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression.
    Hepworth SR; Klenz JE; Haughn GW
    Planta; 2006 Mar; 223(4):769-78. PubMed ID: 16244866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway.
    Han P; García-Ponce B; Fonseca-Salazar G; Alvarez-Buylla ER; Yu H
    Plant J; 2008 Jul; 55(2):253-65. PubMed ID: 18363787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis.
    Gregis V; Andrés F; Sessa A; Guerra RF; Simonini S; Mateos JL; Torti S; Zambelli F; Prazzoli GM; Bjerkan KN; Grini PE; Pavesi G; Colombo L; Coupland G; Kater MM
    Genome Biol; 2013 Jun; 14(6):R56. PubMed ID: 23759218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional activation of APETALA1 by LEAFY.
    Wagner D; Sablowski RW; Meyerowitz EM
    Science; 1999 Jul; 285(5427):582-4. PubMed ID: 10417387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15.
    Zhang Y; Cao G; Qu LJ; Gu H
    J Genet Genomics; 2009 Feb; 36(2):99-107. PubMed ID: 19232308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis.
    Tzeng TY; Hsiao CC; Chi PJ; Yang CH
    Plant Physiol; 2003 Nov; 133(3):1091-101. PubMed ID: 14526112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of binding patterns of MADS-domain proteins in Arabidopsis thaliana.
    Aerts N; de Bruijn S; van Mourik H; Angenent GC; van Dijk ADJ
    BMC Plant Biol; 2018 Jun; 18(1):131. PubMed ID: 29940855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development.
    Yu H; Ito T; Wellmer F; Meyerowitz EM
    Nat Genet; 2004 Feb; 36(2):157-61. PubMed ID: 14716314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.