These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 26096640)

  • 1. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.
    Li N; Wang Y; Tang D; Zhou H
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9271-4. PubMed ID: 26096640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar-Driven Rechargeable Lithium-Sulfur Battery.
    Chen P; Li GR; Li TT; Gao XP
    Adv Sci (Weinh); 2019 Aug; 6(15):1900620. PubMed ID: 31406674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.
    Yu M; McCulloch WD; Beauchamp DR; Huang Z; Ren X; Wu Y
    J Am Chem Soc; 2015 Jul; 137(26):8332-5. PubMed ID: 26102317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Foldable Lithium-Sulfur Battery.
    Li L; Wu ZP; Sun H; Chen D; Gao J; Suresh S; Chow P; Singh CV; Koratkar N
    ACS Nano; 2015 Nov; 9(11):11342-50. PubMed ID: 26412399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging.
    Yu M; Ren X; Ma L; Wu Y
    Nat Commun; 2014 Oct; 5():5111. PubMed ID: 25277368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary Weaknesses: A Win-Win Approach for rGO/CdS to Improve the Energy Conversion Performance of Integrated Photorechargeable Li-S Batteries.
    Yang T; Mao H; Zhang Q; Xu C; Gao Q; Cai X; Zhang S; Fang Y; Zhou X; Peng F; Yang S
    Angew Chem Int Ed Engl; 2024 May; 63(22):e202403022. PubMed ID: 38485698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries.
    Gao J; Abruña HD
    J Phys Chem Lett; 2014 Mar; 5(5):882-5. PubMed ID: 26274082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic Polysulfides Confinement to Inhibit Redox Shuttle Process in the Lithium Sulfur Batteries.
    Ling M; Yan W; Kawase A; Zhao H; Fu Y; Battaglia VS; Liu G
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31741-31745. PubMed ID: 28809469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiently photo-charging lithium-ion battery by perovskite solar cell.
    Xu J; Chen Y; Dai L
    Nat Commun; 2015 Aug; 6():8103. PubMed ID: 26311589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ternary Hybrid Material for High-Performance Lithium-Sulfur Battery.
    Fan Q; Liu W; Weng Z; Sun Y; Wang H
    J Am Chem Soc; 2015 Oct; 137(40):12946-53. PubMed ID: 26378475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell Concepts of Metal-Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications.
    Medenbach L; Adelhelm P
    Top Curr Chem (Cham); 2017 Sep; 375(5):81. PubMed ID: 28963656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Assisted Rechargeable Lithium Batteries: Organic Molecules for Simultaneous Energy Harvesting and Storage.
    Kato K; Puthirath AB; Mojibpour A; Miroshnikov M; Satapathy S; Thangavel NK; Mahankali K; Dong L; Arava LMR; John G; Bharadwaj P; Babu G; Ajayan PM
    Nano Lett; 2021 Jan; 21(2):907-913. PubMed ID: 33416335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.