These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26096671)

  • 1. Nanoparticles derived from plant proteins for controlled release and targeted delivery of therapeutics.
    Xu H; Yang Y
    Nanomedicine (Lond); 2015; 10(13):2001-4. PubMed ID: 26096671
    [No Abstract]   [Full Text] [Related]  

  • 2. Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging.
    Kröger APP; Paulusse JMJ
    J Control Release; 2018 Sep; 286():326-347. PubMed ID: 30077737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: in vivo and drug loading study.
    Xu H; Shen L; Xu L; Yang Y
    Biomed Microdevices; 2015 Feb; 17(1):8. PubMed ID: 25666984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel nanoparticulate drug delivery systems.
    Friedrich RP; Pöttler M; Cicha I; Lyer S; Janko C; Alexiou C
    Nanomedicine (Lond); 2016 Mar; 11(6):573-6. PubMed ID: 26911384
    [No Abstract]   [Full Text] [Related]  

  • 5. pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances.
    Meng F; Zhong Y; Cheng R; Deng C; Zhong Z
    Nanomedicine (Lond); 2014 Mar; 9(3):487-99. PubMed ID: 24746192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of cross-linked carboxyl poly(glycerol methacrylate) and its application for the controlled release of doxorubicin.
    Gu W; Ma Y; Zhu C; Chen B; Ma J; Gao H
    Eur J Pharm Sci; 2012 Oct; 47(3):556-63. PubMed ID: 22884627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folate-decorated PEG-PLGA nanoparticles with silica shells for capecitabine controlled and targeted delivery.
    Wei K; Peng X; Zou F
    Int J Pharm; 2014 Apr; 464(1-2):225-33. PubMed ID: 24463073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticles Conjugated with Photocleavable Linkers for the Intracellular Delivery of Biomolecules.
    Jiménez-Balsa A; Pinto S; Quartin E; Lino MM; Francisco V; Ferreira L
    Bioconjug Chem; 2018 May; 29(5):1485-1489. PubMed ID: 29652487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery.
    Mahmoud AA; El-Feky GS; Kamel R; Awad GE
    Int J Pharm; 2011 Jul; 413(1-2):229-36. PubMed ID: 21540097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and optimization of PMAA-chitosan-PEG nanoparticles for oral drug delivery.
    Pawar H; Douroumis D; Boateng JS
    Colloids Surf B Biointerfaces; 2012 Feb; 90():102-8. PubMed ID: 22037474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered nanoparticles for drug delivery in cancer therapy.
    Sun T; Zhang YS; Pang B; Hyun DC; Yang M; Xia Y
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12320-64. PubMed ID: 25294565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled release of tamoxifen citrate encapsulated in cross-linked guar gum nanoparticles.
    Sarmah JK; Mahanta R; Bhattacharjee SK; Mahanta R; Biswas A
    Int J Biol Macromol; 2011 Oct; 49(3):390-6. PubMed ID: 21641924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature sensitive contact lenses for triggered ophthalmic drug delivery.
    Jung HJ; Chauhan A
    Biomaterials; 2012 Mar; 33(7):2289-300. PubMed ID: 22182750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-responsive intracellular-controlled release using silica mesoporous nanoparticles capped with ε-poly-L-lysine.
    Mondragón L; Mas N; Ferragud V; de la Torre C; Agostini A; Martínez-Máñez R; Sancenón F; Amorós P; Pérez-Payá E; Orzáez M
    Chemistry; 2014 Apr; 20(18):5271-81. PubMed ID: 24700694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan-based nanoparticles for tumor-targeted drug delivery.
    Prabaharan M
    Int J Biol Macromol; 2015 Jan; 72():1313-22. PubMed ID: 25450550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and evaluation of the novel reduction-sensitive starch nanoparticles for controlled drug release.
    Yang J; Huang Y; Gao C; Liu M; Zhang X
    Colloids Surf B Biointerfaces; 2014 Mar; 115():368-76. PubMed ID: 24463097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled release of folic acid through liquid-crystalline folate nanoparticles.
    Misra R; Katyal H; Mohanty S
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():352-61. PubMed ID: 25280715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alzheimer's Disease Targeted Nano-Based Drug Delivery Systems.
    Altinoglu G; Adali T
    Curr Drug Targets; 2020; 21(7):628-646. PubMed ID: 31744447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid polymeric nanoparticles: potential candidate for ophthalmic delivery.
    Bharali DJ; Armstrong D; Mousa SA
    Methods Mol Biol; 2013; 1028():279-86. PubMed ID: 23740127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling a system of phosphated cross-linked high amylose for controlled drug release. Part 2: physical parameters, cross-linking degrees and drug delivery relationships.
    Cury BS; Castro AD; Klein SI; Evangelista RC
    Int J Pharm; 2009 Apr; 371(1-2):8-15. PubMed ID: 19124066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.