BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26096816)

  • 1. Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo.
    Wan J; Wang JH; Liu T; Xie Z; Yu XF; Li W
    Sci Rep; 2015 Jun; 5():11398. PubMed ID: 26096816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods.
    Yasun E; Li C; Barut I; Janvier D; Qiu L; Cui C; Tan W
    Nanoscale; 2015 Jun; 7(22):10240-8. PubMed ID: 25990591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective Distribution of Gold Nanorods in Ordered Thick Mesoporous Silica: A Choice of Noninvasive Theranostics.
    Prasad R; Selvaraj K
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47615-47627. PubMed ID: 37782885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Scale Synthesis of Gold Nanorods through Continuous Secondary Growth.
    Kozek KA; Kozek KM; Wu WC; Mishra SR; Tracy JB
    Chem Mater; 2013 Nov; 25(22):. PubMed ID: 24415848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging.
    Wang S; Xi W; Cai F; Zhao X; Xu Z; Qian J; He S
    Theranostics; 2015; 5(3):251-66. PubMed ID: 25553113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ready-to-use protein G-conjugated gold nanorods for biosensing and biomedical applications.
    Centi S; Ratto F; Tatini F; Lai S; Pini R
    J Nanobiotechnology; 2018 Jan; 16(1):5. PubMed ID: 29351815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Death Pathways of Cancer Cells Modulated by Surface Molecule Density on Gold Nanorods.
    Zhang F; Hou Y; Zhu M; Deng B; Zhao M; Zhu X; Sun Y; Chen D; Jiang C; Wang L; Chen C; Chen H; Chen H; Zheng H; Li W
    Adv Sci (Weinh); 2021 Nov; 8(22):e2102666. PubMed ID: 34523247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing systemic clearance and cellular level biodistribution of gold nanorods by intrinsic two-photon luminescence.
    Tong L; He W; Zhang Y; Zheng W; Cheng JX
    Langmuir; 2009 Nov; 25(21):12454-9. PubMed ID: 19856987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the toxicity of one-step-synthesized PEG-coated gold nanoparticles: in vitro and in vivo studies.
    Garrigós MM; Oliveira FA; Costa CJS; Rodrigues LR; Nucci MP; Alves ADH; Mamani JB; Rego GNA; Munoz JM; Gamarra LF
    Einstein (Sao Paulo); 2024; 22():eAO0764. PubMed ID: 38775605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of Paramagnetic Relaxation by Photoexcited Gold Nanorods.
    Wen T; Wamer WG; Subczynski WK; Hou S; Wu X; Yin JJ
    Sci Rep; 2016 Apr; 6():24101. PubMed ID: 27071507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncloaking cell-impermeant gold nanorods via tumor microenvironmental cathepsin B facilitates cancer cell penetration and potent radiosensitization.
    Raghuram S; Mackeyev Y; Symons J; Zahra Y; Gonzalez V; Mahadevan KK; Requejo KI; Liopo A; Derry P; Zubarev E; Sahin O; Byung-Kyu Kim J; Singh PK; Cho SH; Krishnan S
    Biomaterials; 2022 Dec; 291():121887. PubMed ID: 36368139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Silica Overcoating of Gold Nanorods with Tunable Shell Thicknesses.
    Wu WC; Tracy JB
    Chem Mater; 2015 Apr; 27(8):2888-2894. PubMed ID: 26146454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pancreatic tumor microenvironmental acidosis and hypoxia transform gold nanorods into cell-penetrant particles for potent radiosensitization.
    Rauta PR; Mackeyev Y; Sanders K; Kim JBK; Gonzalez VV; Zahra Y; Shohayeb MA; Abousaida B; Vijay GV; Tezcan O; Derry P; Liopo AV; Zubarev ER; Carter R; Singh P; Krishnan S
    Sci Adv; 2022 Nov; 8(45):eabm9729. PubMed ID: 36367938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenge in Understanding Size and Shape Dependent Toxicity of Gold Nanomaterials in Human Skin Keratinocytes.
    Wang S; Lu W; Tovmachenko O; Rai US; Yu H; Ray PC
    Chem Phys Lett; 2008 Sep; 463(1-3):145-149. PubMed ID: 24068836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of Gold Nanorods with Human Dermal Fibroblasts: Cytotoxicity, Cellular Uptake, and Wound Healing.
    Mahmoud NN; Al-Kharabsheh LM; Khalil EA; Abu-Dahab R
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31390794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography.
    Oldenburg AL; Hansen MN; Ralston TS; Wei A; Boppart SA
    J Mater Chem; 2009 Jan; 19():6407. PubMed ID: 20107616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytotoxicity of mini gold nanorods: intersection with extracellular vesicles.
    Nunes ÁM; Falagan-Lotsch P; Roslend A; Meneghetti MR; Murphy CJ
    Nanoscale Adv; 2023 Jan; 5(3):733-741. PubMed ID: 36756525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanohexagrams
    Su A; Wang Q; Huang L; Zheng Y; Wang Y; Chen H
    Nanoscale; 2023 Sep; 15(36):14858-14865. PubMed ID: 37642320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanotherapeutics targeting autophagy regulation for improved cancer therapy.
    Liu Y; Wang Y; Zhang J; Peng Q; Wang X; Xiao X; Shi K
    Acta Pharm Sin B; 2024 Jun; 14(6):2447-2474. PubMed ID: 38828133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications.
    Ding J; Ding X; Liao W; Lu Z
    Mater Today Bio; 2024 Feb; 24():100913. PubMed ID: 38188647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.