These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26096954)

  • 1. Multi-objective LQR with optimum weight selection to design FOPID controllers for delayed fractional order processes.
    Das S; Pan I; Das S
    ISA Trans; 2015 Sep; 58():35-49. PubMed ID: 26096954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time.
    Das S; Pan I; Das S
    ISA Trans; 2013 Jul; 52(4):550-66. PubMed ID: 23664205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved model reduction and tuning of fractional-order PI(λ)D(μ) controllers for analytical rule extraction with genetic programming.
    Das S; Pan I; Das S; Gupta A
    ISA Trans; 2012 Mar; 51(2):237-61. PubMed ID: 22036301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optimal PID controller via LQR for standard second order plus time delay systems.
    Srivastava S; Misra A; Thakur SK; Pandit VS
    ISA Trans; 2016 Jan; 60():244-253. PubMed ID: 26654724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload.
    Sharma R; Gaur P; Mittal AP
    ISA Trans; 2015 Sep; 58():279-91. PubMed ID: 25896827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the selection of tuning methodology of FOPID controllers for the control of higher order processes.
    Das S; Saha S; Das S; Gupta A
    ISA Trans; 2011 Jul; 50(3):376-88. PubMed ID: 21420085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid controller with neural network PID/FOPID operations for two-link rigid robot manipulator based on the zebra optimization algorithm.
    Jasim Mohamed M; Oleiwi BK; Azar AT; Mahlous AR
    Front Robot AI; 2024; 11():1386968. PubMed ID: 38947861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.
    Sánchez HS; Padula F; Visioli A; Vilanova R
    ISA Trans; 2017 Jan; 66():344-361. PubMed ID: 27988040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 2-Dof LQR based PID controller for integrating processes considering robustness/performance tradeoff.
    Srivastava S; Pandit VS
    ISA Trans; 2017 Nov; 71(Pt 2):426-439. PubMed ID: 28941953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Handling packet dropouts and random delays for unstable delayed processes in NCS by optimal tuning of PIλDμ controllers with evolutionary algorithms.
    Pan I; Das S; Gupta A
    ISA Trans; 2011 Oct; 50(4):557-72. PubMed ID: 21621208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal robust fractional order PI
    Chen P; Luo Y; Peng Y; Chen Y
    ISA Trans; 2021 Aug; 114():136-149. PubMed ID: 33531140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a fractional order PID controller using GBMO algorithm for load-frequency control with governor saturation consideration.
    Zamani A; Barakati SM; Yousofi-Darmian S
    ISA Trans; 2016 Sep; 64():56-66. PubMed ID: 27172840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symbolic representation for analog realization of a family of fractional order controller structures via continued fraction expansion.
    Pakhira A; Das S; Pan I; Das S
    ISA Trans; 2015 Jul; 57():390-402. PubMed ID: 25661163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractional-order PID design: Towards transition from state-of-art to state-of-use.
    Chevalier A; Francis C; Copot C; Ionescu CM; De Keyser R
    ISA Trans; 2019 Jan; 84():178-186. PubMed ID: 30342816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractional order PID control design for semi-active control of smart base-isolated structures: A multi-objective cuckoo search approach.
    Zamani AA; Tavakoli S; Etedali S
    ISA Trans; 2017 Mar; 67():222-232. PubMed ID: 28111029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous Collision Avoidance Using MPC with LQR-Based Weight Transformation.
    Taherian S; Halder K; Dixit S; Fallah S
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34201820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time.
    Li M; Zhou P; Zhao Z; Zhang J
    ISA Trans; 2016 Mar; 61():147-154. PubMed ID: 26753617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IMC-PID-fractional-order-filter controllers design for integer order systems.
    Maâmar B; Rachid M
    ISA Trans; 2014 Sep; 53(5):1620-8. PubMed ID: 24957276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A uniform LMI formulation for tuning PID, multi-term fractional-order PID, and Tilt-Integral-Derivative (TID) for integer and fractional-order processes.
    Merrikh-Bayat F
    ISA Trans; 2017 May; 68():99-108. PubMed ID: 28318548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel interval type-2 fractional order fuzzy PID controller: Design, performance evaluation, and its optimal time domain tuning.
    Kumar A; Kumar V
    ISA Trans; 2017 May; 68():251-275. PubMed ID: 28372800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.