These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 26097127)
1. Long-term in vitro hydrolytic stability of thermoplastic polyurethanes. Mishra A; Seethamraju K; Delaney J; Willoughby P; Faust R J Biomed Mater Res A; 2015 Dec; 103(12):3798-806. PubMed ID: 26097127 [TBL] [Abstract][Full Text] [Related]
2. Long term in vitro biostability of segmented polyisobutylene-based thermoplastic polyurethanes. Cozzens D; Ojha U; Kulkarni P; Faust R; Desai S J Biomed Mater Res A; 2010 Dec; 95(3):774-82. PubMed ID: 20725977 [TBL] [Abstract][Full Text] [Related]
3. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849 [TBL] [Abstract][Full Text] [Related]
4. Comparison of clinical explants and accelerated hydrolytic aging to improve biostability assessment of silicone-based polyurethanes. Cosgriff-Hernandez E; Tkatchouk E; Touchet T; Sears N; Kishan A; Jenney C; Padsalgikar AD; Chen E J Biomed Mater Res A; 2016 Jul; 104(7):1805-16. PubMed ID: 26990709 [TBL] [Abstract][Full Text] [Related]
5. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation. Khan I; Smith N; Jones E; Finch DS; Cameron RE Biomaterials; 2005 Feb; 26(6):621-31. PubMed ID: 15282140 [TBL] [Abstract][Full Text] [Related]
6. Surface characterization and protein interactions of segmented polyisobutylene-based thermoplastic polyurethanes. Cozzens D; Luk A; Ojha U; Ruths M; Faust R Langmuir; 2011 Dec; 27(23):14160-8. PubMed ID: 22023013 [TBL] [Abstract][Full Text] [Related]
7. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: in vivo investigation. Khan I; Smith N; Jones E; Finch DS; Cameron RE Biomaterials; 2005 Feb; 26(6):633-43. PubMed ID: 15282141 [TBL] [Abstract][Full Text] [Related]
9. Characterisation of Bionate polycarbonate polyurethanes for orthopaedic applications. Geary C; Birkinshaw C; Jones E J Mater Sci Mater Med; 2008 Nov; 19(11):3355-63. PubMed ID: 18548336 [TBL] [Abstract][Full Text] [Related]
10. Long-term in vitro stability assessment of polycarbonate urethane micro catheters: resistance to oxidation and stress cracking. Chandy T; Van Hee J; Nettekoven W; Johnson J J Biomed Mater Res B Appl Biomater; 2009 May; 89(2):314-324. PubMed ID: 18837455 [TBL] [Abstract][Full Text] [Related]
11. Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition. Zhang J; Woodruff TM; Clark RJ; Martin DJ; Minchin RF Acta Biomater; 2016 Sep; 41():264-72. PubMed ID: 27245428 [TBL] [Abstract][Full Text] [Related]
12. In vitro biostability of poly(dimethyl siloxane/hexamethylene oxide)-based polyurethane/layered silicate nanocomposites. Andriani Y; Morrow IC; Taran E; Edwards GA; Schiller TL; Osman AF; Martin DJ Acta Biomater; 2013 Sep; 9(9):8308-17. PubMed ID: 23727246 [TBL] [Abstract][Full Text] [Related]
13. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature. Chaffin KA; Wilson CL; Himes AK; Dawson JW; Haddad TD; Buckalew AJ; Miller JP; Untereker DF; Simha NK Biomaterials; 2013 Nov; 34(33):8030-41. PubMed ID: 23871543 [TBL] [Abstract][Full Text] [Related]
14. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310 [TBL] [Abstract][Full Text] [Related]
15. In vivo biostability of shore 55D polyether polyurethanes with and without fluoropolymer surface modifying endgroups. Ward R; Anderson J; McVenes R; Stokes K J Biomed Mater Res A; 2006 Dec; 79(4):836-45. PubMed ID: 16886224 [TBL] [Abstract][Full Text] [Related]
16. Chemical and physical characterization of a novel poly(carbonate urea) urethane surface with protein crosslinker sites. Phaneuf MD; Quist WC; LoGerfo FW; Szycher M; Dempsey DJ; Bide MJ J Biomater Appl; 1997 Oct; 12(2):100-20. PubMed ID: 9399137 [TBL] [Abstract][Full Text] [Related]
17. Green TPUs from Prepolymer Mixtures Designed by Controlling the Chemical Structure of Flexible Segments. Kasprzyk P; Głowińska E; Parcheta-Szwindowska P; Rohde K; Datta J Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299058 [TBL] [Abstract][Full Text] [Related]
18. In vitro stability of polyether and polycarbonate urethanes. Tanzi MC; Farè S; Petrini P J Biomater Appl; 2000 Apr; 14(4):325-48. PubMed ID: 10794506 [TBL] [Abstract][Full Text] [Related]
19. Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles. Yang M; Zhang Z; Hahn C; Laroche G; King MW; Guidoin R J Biomed Mater Res; 1999; 48(1):13-23. PubMed ID: 10029144 [TBL] [Abstract][Full Text] [Related]
20. In vitro oxidative stability of high strength siloxane poly(urethane-urea) elastomers based on linked-macrodiol. Dandeniyage LS; Knower W; Adhikari R; Bown M; Shanks R; Adhikari B; Gunatillake PA J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2557-2565. PubMed ID: 30835945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]