These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
495 related articles for article (PubMed ID: 26098002)
21. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot. Calisti M; Corucci F; Arienti A; Laschi C Bioinspir Biomim; 2015 Jul; 10(4):046012. PubMed ID: 26226238 [TBL] [Abstract][Full Text] [Related]
22. Extension and customization of self-stability control in compliant legged systems. Ernst M; Geyer H; Blickhan R Bioinspir Biomim; 2012 Dec; 7(4):046002. PubMed ID: 22791685 [TBL] [Abstract][Full Text] [Related]
23. Local reflexive mechanisms essential for snakes' scaffold-based locomotion. Kano T; Sato T; Kobayashi R; Ishiguro A Bioinspir Biomim; 2012 Dec; 7(4):046008. PubMed ID: 22918023 [TBL] [Abstract][Full Text] [Related]
24. Tactile surface classification for limbed robots using a pressure sensitive robot skin. Shill JJ; Collins EG; Coyle E; Clark J Bioinspir Biomim; 2015 Feb; 10(1):016012. PubMed ID: 25642694 [TBL] [Abstract][Full Text] [Related]
30. Controlling legs for locomotion-insights from robotics and neurobiology. Buschmann T; Ewald A; von Twickel A; Büschges A Bioinspir Biomim; 2015 Jun; 10(4):041001. PubMed ID: 26119450 [TBL] [Abstract][Full Text] [Related]
31. A dragline-forming mobile robot inspired by spiders. Wang L; Culha U; Iida F Bioinspir Biomim; 2014 Mar; 9(1):016006. PubMed ID: 24434546 [TBL] [Abstract][Full Text] [Related]
32. Towards realization of multi-terrestrial locomotion: decentralized control of a sheet-like robot based on the scaffold-exploitation mechanism. Kano T; Watanabe Y; Ishiguro A Bioinspir Biomim; 2012 Dec; 7(4):046012. PubMed ID: 23093049 [TBL] [Abstract][Full Text] [Related]
33. Phase coordination and phase-velocity relationship in metameric robot locomotion. Fang H; Li S; Wang KW; Xu J Bioinspir Biomim; 2015 Oct; 10(6):066006. PubMed ID: 26513696 [TBL] [Abstract][Full Text] [Related]
34. Theoretical and experimental study on a compliant flipper-leg during terrestrial locomotion. Fang T; Zhou Y; Li S; Xu M; Liang H; Li W; Zhang S Bioinspir Biomim; 2016 Aug; 11(5):056005. PubMed ID: 27530372 [TBL] [Abstract][Full Text] [Related]
35. Special issue featuring selected papers from the International Workshop on Bio-Inspired Robots (Nantes, France, 6-8 April 2011). Boyer F; Stefanini C; Ruffier F; Viollet S Bioinspir Biomim; 2012 Jun; 7(2):020201. PubMed ID: 22619178 [No Abstract] [Full Text] [Related]
37. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research. Raj A; Thakur A Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001 [TBL] [Abstract][Full Text] [Related]
38. Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots. Jusufi A; Kawano DT; Libby T; Full RJ Bioinspir Biomim; 2010 Dec; 5(4):045001. PubMed ID: 21098954 [TBL] [Abstract][Full Text] [Related]
39. An insect-scale robot reveals the effects of different body dynamics regimes during open-loop running in feature-laden terrain. Schiebel PE; Shum J; Cerbone H; Wood RJ Bioinspir Biomim; 2022 Feb; 17(2):. PubMed ID: 34874292 [TBL] [Abstract][Full Text] [Related]
40. Viscoelastic legs for open-loop control of gram-scale robots. St Pierre R; Gao W; Clark JE; Bergbreiter S Bioinspir Biomim; 2020 Jul; 15(5):055005. PubMed ID: 32580172 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]