BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26098225)

  • 1. Peptide-modified Substrate for Modulating Gland Tissue Growth and Morphology In Vitro.
    Taketa H; Sathi GA; Farahat M; Rahman KA; Sakai T; Hirano Y; Kuboki T; Torii Y; Matsumoto T
    Sci Rep; 2015 Jun; 5():11468. PubMed ID: 26098225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel-based biomimetic environment for in vitro modulation of branching morphogenesis.
    Miyajima H; Matsumoto T; Sakai T; Yamaguchi S; An SH; Abe M; Wakisaka S; Lee KY; Egusa H; Imazato S
    Biomaterials; 2011 Oct; 32(28):6754-63. PubMed ID: 21683999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual peptide-presenting hydrogels for controlling the phenotype of PC12 cells.
    Lee JW; Lee KY
    Colloids Surf B Biointerfaces; 2017 Apr; 152():36-41. PubMed ID: 28068609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A First Step in De Novo Synthesis of a Living Pulp Tissue Replacement Using Dental Pulp MSCs and Tissue Growth Factors, Encapsulated within a Bioinspired Alginate Hydrogel.
    Bhoj M; Zhang C; Green DW
    J Endod; 2015 Jul; 41(7):1100-7. PubMed ID: 25958179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering.
    Shachar M; Tsur-Gang O; Dvir T; Leor J; Cohen S
    Acta Biomater; 2011 Jan; 7(1):152-62. PubMed ID: 20688198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration.
    Hsu SH; Whu SW; Hsieh SC; Tsai CL; Chen DC; Tan TS
    Artif Organs; 2004 Aug; 28(8):693-703. PubMed ID: 15270950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting.
    Ito A; Ino K; Kobayashi T; Honda H
    Biomaterials; 2005 Nov; 26(31):6185-93. PubMed ID: 15899515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications.
    Sandvig I; Karstensen K; Rokstad AM; Aachmann FL; Formo K; Sandvig A; Skjåk-Bræk G; Strand BL
    J Biomed Mater Res A; 2015 Mar; 103(3):896-906. PubMed ID: 24826938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of integrin-binding peptide and growth factor promotes cell adhesion on electron-beam-fabricated patterns.
    Kolodziej CM; Kim SH; Broyer RM; Saxer SS; Decker CG; Maynard HD
    J Am Chem Soc; 2012 Jan; 134(1):247-55. PubMed ID: 22126191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports.
    Petrie TA; Capadona JR; Reyes CD; García AJ
    Biomaterials; 2006 Nov; 27(31):5459-70. PubMed ID: 16846640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide REDV-modified polysaccharide hydrogel with endothelial cell selectivity for the promotion of angiogenesis.
    Wang W; Guo L; Yu Y; Chen Z; Zhou R; Yuan Z
    J Biomed Mater Res A; 2015 May; 103(5):1703-12. PubMed ID: 25103847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes.
    Ito A; Akiyama H; Kawabe Y; Kamihira M
    J Biosci Bioeng; 2007 Oct; 104(4):288-93. PubMed ID: 18023801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell adhesion, spreading, and proliferation on surface functionalized with RGD nanopillar arrays.
    Abdul Kafi M; El-Said WA; Kim TH; Choi JW
    Biomaterials; 2012 Jan; 33(3):731-9. PubMed ID: 22018383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibronectin-induced ductal formation in salivary gland self-organization model.
    Farahat M; Kazi GAS; Taketa H; Hara ES; Oshima M; Kuboki T; Matsumoto T
    Dev Dyn; 2019 Sep; 248(9):813-825. PubMed ID: 31237723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis.
    Jaskoll T; Witcher D; Toreno L; Bringas P; Moon AM; Melnick M
    Dev Biol; 2004 Apr; 268(2):457-69. PubMed ID: 15063181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.
    Lee MK; Rich MH; Lee J; Kong H
    Biomaterials; 2015 Jul; 58():26-34. PubMed ID: 25941779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The enhancement of submandibular gland branch formation on chitosan membranes.
    Yang TL; Young TH
    Biomaterials; 2008 Jun; 29(16):2501-8. PubMed ID: 18316118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hydrogel material for plastic and reconstructive applications injected into the subcutaneous space of a sheep.
    Halberstadt C; Austin C; Rowley J; Culberson C; Loebsack A; Wyatt S; Coleman S; Blacksten L; Burg K; Mooney D; Holder W
    Tissue Eng; 2002 Apr; 8(2):309-19. PubMed ID: 12031119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of compositional topography of amniotic membrane scaffold on tissue morphogenesis of salivary gland.
    Hsiao YC; Lee HW; Chen YT; Young TH; Yang TL
    Biomaterials; 2011 Jul; 32(19):4424-32. PubMed ID: 21439637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of hepatocyte growth factor in branching morphogenesis of murine salivary gland.
    Ikari T; Hiraki A; Seki K; Sugiura T; Matsumoto K; Shirasuna K
    Dev Dyn; 2003 Oct; 228(2):173-84. PubMed ID: 14517989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.