BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26098356)

  • 21. An FPGA-Based Backend System for Intravascular Photoacoustic and Ultrasound Imaging.
    Wu X; Sanders JL; Zhang X; Yamaner FY; Oralkan O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan; 66(1):45-56. PubMed ID: 30442605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the possibility to detect lipid in atherosclerotic plaques using intravascular photoacoustic imaging.
    Wang B; Su J; Amirian J; Litovsky SH; Smalling R; Emelianov S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4767-70. PubMed ID: 19964847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrafine intravascular photoacoustic endoscope with a 0.7  mm diameter probe.
    Lei P; Wen X; Wang L; Zhang P; Yang S
    Opt Lett; 2019 Nov; 44(22):5406-5409. PubMed ID: 31730069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intravascular ultrasound and photoacoustic imaging.
    Emelianov S; Wang B; Su J; Karpiouk A; Yantsen E; Sokolov K; Amirian J; Smalling R; Sethuraman S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2-5. PubMed ID: 19162578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging.
    Wang B; Su JL; Amirian J; Litovsky SH; Smalling R; Emelianov S
    Opt Express; 2010 Mar; 18(5):4889-97. PubMed ID: 20389501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO.
    Hui J; Yu Q; Ma T; Wang P; Cao Y; Bruning RS; Qu Y; Chen Z; Zhou Q; Sturek M; Cheng JX; Chen W
    Biomed Opt Express; 2015 Nov; 6(11):4557-66. PubMed ID: 26601018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter.
    Bai X; Gong X; Hau W; Lin R; Zheng J; Liu C; Zeng C; Zou X; Zheng H; Song L
    PLoS One; 2014; 9(3):e92463. PubMed ID: 24651256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques.
    Sethuraman S; Amirian JH; Litovsky SH; Smalling RW; Emelianov SY
    Opt Express; 2008 Mar; 16(5):3362-7. PubMed ID: 18542427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative Quantification of Arterial Lipid by Intravascular Photoacoustic-Ultrasound Imaging and Near-Infrared Spectroscopy-Intravascular Ultrasound.
    Kole A; Cao Y; Hui J; Bolad IA; Alloosh M; Cheng JX; Sturek M
    J Cardiovasc Transl Res; 2019 Jun; 12(3):211-220. PubMed ID: 30488332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computer-based simulator for intravascular photoacoustic images.
    Zheng S; Yuan Y; Duoduo H
    Comput Biol Med; 2017 Feb; 81():176-187. PubMed ID: 28088080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency-domain differential photoacoustic radar: theory and validation for ultrasensitive atherosclerotic plaque imaging.
    Choi SSS; Lashkari B; Mandelis A; Son J; Alves-Kotzev N; Foster SF; Harduar M; Courtney B
    J Biomed Opt; 2019 Jun; 24(6):1-12. PubMed ID: 31197987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of device geometry on the imaging characteristics of an intravascular photoacoustic catheter.
    Wu M; Jansen K; Springeling G; van der Steen AF; van Soest G
    Appl Opt; 2014 Dec; 53(34):8131-9. PubMed ID: 25607973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid detection in atherosclerotic human coronaries by spectroscopic intravascular photoacoustic imaging.
    Jansen K; Wu M; van der Steen AF; van Soest G
    Opt Express; 2013 Sep; 21(18):21472-84. PubMed ID: 24104022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: a feasibility study.
    Yeager D; Chen YS; Litovsky S; Emelianov S
    Theranostics; 2013; 4(1):36-46. PubMed ID: 24396514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intravascular ultrasonic-photoacoustic (IVUP) endoscope with 2.2-mm diameter catheter for medical imaging.
    Bui NQ; Hlaing KK; Nguyen VP; Nguyen TH; Oh YO; Fan XF; Lee YW; Nam SY; Kang HW; Oh J
    Comput Med Imaging Graph; 2015 Oct; 45():57-62. PubMed ID: 26258625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of dual-wavelength intravascular photoacoustic imaging of atherosclerotic plaques using Monte Carlo optical modeling.
    Dana N; Sowers T; Karpiouk A; Vanderlaan D; Emelianov S
    J Biomed Opt; 2017 Oct; 22(10):1-12. PubMed ID: 29076309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remote temperature estimation in intravascular photoacoustic imaging.
    Sethuraman S; Aglyamov SR; Smalling RW; Emelianov SY
    Ultrasound Med Biol; 2008 Feb; 34(2):299-308. PubMed ID: 17935861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-sensitivity intravascular photoacoustic imaging of lipid-laden plaque with a collinear catheter design.
    Cao Y; Hui J; Kole A; Wang P; Yu Q; Chen W; Sturek M; Cheng JX
    Sci Rep; 2016 Apr; 6():25236. PubMed ID: 27121894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interference-free Detection of Lipid-laden Atherosclerotic Plaques by 3D Co-registration of Frequency-Domain Differential Photoacoustic and Ultrasound Radar Imaging.
    Choi SSS; Lashkari B; Mandelis A; Weyers JJ; Boyes A; Foster SF; Alves-Kotzev N; Courtney B
    Sci Rep; 2019 Aug; 9(1):12400. PubMed ID: 31455883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range.
    Allen TJ; Hall A; Dhillon AP; Owen JS; Beard PC
    J Biomed Opt; 2012 Jun; 17(6):061209. PubMed ID: 22734739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.