These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26098367)

  • 1. Rapidly rotating second-generation progenitors for the 'blue hook' stars of ω Centauri.
    Tailo M; D'Antona F; Vesperini E; Di Criscienzo M; Ventura P; Milone AP; Bellini A; Dotter A; Decressin T; D'Ercole A; Caloi V; Capuzzo-Dolcetta R
    Nature; 2015 Jul; 523(7560):318-21. PubMed ID: 26098367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium content as a predictor of the advanced evolution of globular cluster stars.
    Campbell SW; D'Orazi V; Yong D; Constantino TN; Lattanzio JC; Stancliffe RJ; Angelou GC; Wylie-de Boer EC; Grundahl F
    Nature; 2013 Jun; 498(7453):198-200. PubMed ID: 23719375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enrichment by supernovae in globular clusters with multiple populations.
    Lee JW; Kang YW; Lee J; Lee YW
    Nature; 2009 Nov; 462(7272):480-2. PubMed ID: 19940919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotations and Abundances of Blue Horizontal-Branch Stars in Globular Cluster M15.
    Behr BB; Cohen JG; McCarthy JK
    Astrophys J; 2000 Mar; 531(1):L37-L40. PubMed ID: 10673409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. White dwarf stars with carbon atmospheres.
    Dufour P; Liebert J; Fontaine G; Behara N
    Nature; 2007 Nov; 450(7169):522-4. PubMed ID: 18033290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of new stellar populations from gas accreted by massive young star clusters.
    Li C; de Grijs R; Deng L; Geller AM; Xin Y; Hu Y; Faucher-Giguère CA
    Nature; 2016 Jan; 529(7587):502-4. PubMed ID: 26819043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formation of a massive protostar through the disk accretion of gas.
    Chini R; Hoffmeister V; Kimeswenger S; Nielbock M; Nürnberger D; Schmidtobreick L; Sterzik M
    Nature; 2004 May; 429(6988):155-7. PubMed ID: 15141204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast-moving stars around an intermediate-mass black hole in ω Centauri.
    Häberle M; Neumayer N; Seth A; Bellini A; Libralato M; Baumgardt H; Whitaker M; Dumont A; Alfaro-Cuello M; Anderson J; Clontz C; Kacharov N; Kamann S; Feldmeier-Krause A; Milone A; Nitschai MS; Pechetti R; van de Ven G
    Nature; 2024 Jul; 631(8020):285-288. PubMed ID: 38987499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the nature of supernova progenitors.
    Groh JH
    Philos Trans A Math Phys Eng Sci; 2017 Oct; 375(2105):. PubMed ID: 28923996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A binary star fraction of 76 per cent and unusual orbit parameters for the blue stragglers of NGC 188.
    Mathieu RD; Geller AM
    Nature; 2009 Dec; 462(7276):1032-5. PubMed ID: 20033042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic diffusion and mixing in old stars - VIII. Chemical abundance variations in the globular cluster M4 (NGC 6121).
    Nordlander T; Gruyters P; Richard O; Korn AJ
    Mon Not R Astron Soc; 2024 Feb; 527(4):12120-12139. PubMed ID: 38223557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range.
    Belczynski K; Holz DE; Bulik T; O'Shaughnessy R
    Nature; 2016 Jun; 534(7608):512-5. PubMed ID: 27337338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The age of the Milky Way inner halo.
    Kalirai JS
    Nature; 2012 May; 486(7401):90-2. PubMed ID: 22678285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Outbursts of luminous blue variable stars from variations in the helium opacity.
    Jiang YF; Cantiello M; Bildsten L; Quataert E; Blaes O; Stone J
    Nature; 2018 Sep; 561(7724):498-501. PubMed ID: 30258134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A terrestrial planet candidate in a temperate orbit around Proxima Centauri.
    Anglada-Escudé G; Amado PJ; Barnes J; Berdiñas ZM; Butler RP; Coleman GA; de la Cueva I; Dreizler S; Endl M; Giesers B; Jeffers SV; Jenkins JS; Jones HR; Kiraga M; Kürster M; López-González MJ; Marvin CJ; Morales N; Morin J; Nelson RP; Ortiz JL; Ofir A; Paardekooper SJ; Reiners A; Rodríguez E; Rodrίguez-López C; Sarmiento LF; Strachan JP; Tsapras Y; Tuomi M; Zechmeister M
    Nature; 2016 Aug; 536(7617):437-40. PubMed ID: 27558064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early turbulent mixing as the origin of chemical homogeneity in open star clusters.
    Feng Y; Krumholz MR
    Nature; 2014 Sep; 513(7519):523-5. PubMed ID: 25174709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imprints of fast-rotating massive stars in the Galactic Bulge.
    Chiappini C; Frischknecht U; Meynet G; Hirschi R; Barbuy B; Pignatari M; Decressin T; Maeder A
    Nature; 2011 Apr; 472(7344):454-7. PubMed ID: 21525928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster.
    Meibom S; Barnes SA; Platais I; Gilliland RL; Latham DW; Mathieu RD
    Nature; 2015 Jan; 517(7536):589-91. PubMed ID: 25539085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of three lead-rich stars.
    Van Eck S; Goriely S; Jorissen A; Plez B
    Nature; 2001 Aug; 412(6849):793-5. PubMed ID: 11518958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. M stars as targets for terrestrial exoplanet searches and biosignature detection.
    Scalo J; Kaltenegger L; Segura A; Fridlund M; Ribas I; Kulikov YN; Grenfell JL; Rauer H; Odert P; Leitzinger M; Selsis F; Khodachenko ML; Eiroa C; Kasting J; Lammer H
    Astrobiology; 2007 Feb; 7(1):85-166. PubMed ID: 17407405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.