BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26098412)

  • 1. Maximizing the utilization of Laminaria japonica as biomass via improvement of alginate lyase activity in a two-phase fermentation system.
    Oh Y; Xu X; Kim JY; Park JM
    Biotechnol J; 2015 Aug; 10(8):1281-8. PubMed ID: 26098412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient conversion of mannitol derived from brown seaweed to fructose for fermentation with a thraustochytrid.
    Tajima T; Tomita K; Miyahara H; Watanabe K; Aki T; Okamura Y; Matsumura Y; Nakashimada Y; Kato J
    J Biosci Bioeng; 2018 Feb; 125(2):180-184. PubMed ID: 28970111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An engineered microbial platform for direct biofuel production from brown macroalgae.
    Wargacki AJ; Leonard E; Win MN; Regitsky DD; Santos CN; Kim PB; Cooper SR; Raisner RM; Herman A; Sivitz AB; Lakshmanaswamy A; Kashiyama Y; Baker D; Yoshikuni Y
    Science; 2012 Jan; 335(6066):308-13. PubMed ID: 22267807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platform construction of molecular breeding for utilization of brown macroalgae.
    Takagi T; Kuroda K; Ueda M
    J Biosci Bioeng; 2018 Jan; 125(1):1-7. PubMed ID: 28877851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The isolation and characterization of simultaneous saccharification and fermentation microorganisms for Laminaria japonica utilization.
    Lee SM; Lee JH
    Bioresour Technol; 2011 May; 102(10):5962-7. PubMed ID: 21419623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol.
    Takagi T; Sasaki Y; Motone K; Shibata T; Tanaka R; Miyake H; Mori T; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6627-6636. PubMed ID: 28741083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of biodiesel from carbon sources of macroalgae, Laminaria japonica.
    Xu X; Kim JY; Oh YR; Park JM
    Bioresour Technol; 2014 Oct; 169():455-461. PubMed ID: 25084043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Draft genome sequence of Microbulbifer elongatus strain HZ11, a brown seaweed-degrading bacterium with potential ability to produce bioethanol from alginate.
    Sun C; Chen YJ; Zhang XQ; Pan J; Cheng H; Wu M
    Mar Genomics; 2014 Dec; 18 Pt B():83-5. PubMed ID: 24907394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica.
    Li SY; Wang ZP; Wang LN; Peng JX; Wang YN; Han YT; Zhao SF
    Bioresour Technol; 2019 Jun; 281():84-89. PubMed ID: 30802819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximization of volatile fatty acids production from alginate in acidogenesis.
    Pham HD; Seon J; Lee SC; Song M; Woo HC
    Bioresour Technol; 2013 Nov; 148():601-4. PubMed ID: 24080441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Level Expression of a Thermally Stable Alginate Lyase Using Pichia pastoris, Characterization and Application in Producing Brown Alginate Oligosaccharide.
    Li H; Wang S; Zhang Y; Chen L
    Mar Drugs; 2018 May; 16(5):. PubMed ID: 29751659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of pH attenuates toxicity of a byproduct produced by an ethanologenic strain of Sphingomonas sp. A1 during ethanol fermentation from alginate.
    Fujii M; Yoshida S; Murata K; Kawai S
    Bioengineered; 2014; 5(1):38-44. PubMed ID: 24445222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional identification of alginate lyase from the brown alga Saccharina japonica.
    Inoue A; Ojima T
    Sci Rep; 2019 Mar; 9(1):4937. PubMed ID: 30894645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae.
    Yagi H; Fujise A; Itabashi N; Ohshiro T
    Biosci Biotechnol Biochem; 2016 Dec; 80(12):2338-2346. PubMed ID: 27648685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate.
    Takagi T; Yokoi T; Shibata T; Morisaka H; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1723-1732. PubMed ID: 26490549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The surface display of the alginate lyase on the cells of Yarrowia lipolytica for hydrolysis of alginate.
    Liu G; Yue L; Chi Z; Yu W; Chi Z; Madzak C
    Mar Biotechnol (NY); 2009; 11(5):619-26. PubMed ID: 19165542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical Characteristics and Variable Alginate-Degrading Modes of a Novel Bifunctional Endolytic Alginate Lyase.
    Cheng Y; Wang D; Gu J; Li J; Liu H; Li F; Han W
    Appl Environ Microbiol; 2017 Dec; 83(23):. PubMed ID: 28939598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal production of 4-deoxy-L-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases.
    Wang DM; Kim HT; Yun EJ; Kim DH; Park YC; Woo HC; Kim KH
    Bioprocess Biosyst Eng; 2014 Oct; 37(10):2105-11. PubMed ID: 24794171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolyzing Laminaria japonica with a combination of microbial alginate lyase and cellulase.
    Sun C; Zhou J; Duan G; Yu X
    Bioresour Technol; 2020 Sep; 311():123548. PubMed ID: 32454421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the quality of Laminaria japonica-based diet for Apostichopus japonicus through degradation of its algin content with Bacillus amyloliquefaciens WB1.
    Wang X; Wang L; Che J; Li Z; Zhang J; Li X; Hu W; Xu Y
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):5843-53. PubMed ID: 25895094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.