These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26098451)

  • 21. Attomolar Sensitivity in Single Biomarker Counting upon Aqueous Two-Phase Surface Enrichment.
    Li Z; McNeely M; Sandford E; Tewari M; Johnson-Buck A; Walter NG
    ACS Sens; 2022 May; 7(5):1419-1430. PubMed ID: 35438959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transient Hybridization Directed Nanoflare for Single-Molecule miRNA Imaging.
    Li L; Yu Y; Wang C; Han Q; Su X
    Anal Chem; 2019 Sep; 91(17):11122-11128. PubMed ID: 31402644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Rapid, Amplification-Free, and Sensitive Diagnostic Assay for Single-Step Multiplexed Fluorescence Detection of MicroRNA.
    Jin Z; Geißler D; Qiu X; Wegner KD; Hildebrandt N
    Angew Chem Int Ed Engl; 2015 Aug; 54(34):10024-9. PubMed ID: 26226913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expanding the Dynamic Range of Fluorescence Assays through Single-Molecule Counting and Intensity Calibration.
    Smith L; Kohli M; Smith AM
    J Am Chem Soc; 2018 Oct; 140(42):13904-13912. PubMed ID: 30215524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of small RNAs and microRNAs using deep sequencing technology.
    Havecker ER
    Methods Mol Biol; 2011; 732():55-68. PubMed ID: 21431705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of micro-RNA in cardiomyoblast cells using CE with LIF detection.
    Ban E; Chae DK; Song EJ
    Electrophoresis; 2013 Feb; 34(4):598-604. PubMed ID: 23192357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decreasing miRNA sequencing bias using a single adapter and circularization approach.
    Barberán-Soler S; Vo JM; Hogans RE; Dallas A; Johnston BH; Kazakov SA
    Genome Biol; 2018 Sep; 19(1):105. PubMed ID: 30173660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing.
    Lu N; Gao A; Dai P; Song S; Fan C; Wang Y; Li T
    Small; 2014 May; 10(10):2022-8. PubMed ID: 24574202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Locking-to-unlocking system is an efficient strategy to design DNA/silver nanoclusters (AgNCs) probe for human miRNAs.
    Shah P; Choi SW; Kim HJ; Cho SK; Bhang YJ; Ryu MY; Thulstrup PW; Bjerrum MJ; Yang SW
    Nucleic Acids Res; 2016 Apr; 44(6):e57. PubMed ID: 26681688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification.
    Zhang LR; Zhu G; Zhang CY
    Anal Chem; 2014 Jul; 86(13):6703-9. PubMed ID: 24903889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy.
    Li RD; Wang Q; Yin BC; Ye BC
    Biosens Bioelectron; 2016 Mar; 77():995-1000. PubMed ID: 26547010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Super-resolution Geometric Barcoding for Multiplexed miRNA Profiling.
    Xu W; Yin P; Dai M
    Angew Chem Int Ed Engl; 2018 Oct; 57(43):14075-14079. PubMed ID: 30182521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells.
    Deng R; Tang L; Tian Q; Wang Y; Lin L; Li J
    Angew Chem Int Ed Engl; 2014 Feb; 53(9):2389-93. PubMed ID: 24469913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microelectrode miRNA sensors enabled by enzymeless electrochemical signal amplification.
    Wang T; Viennois E; Merlin D; Wang G
    Anal Chem; 2015 Aug; 87(16):8173-80. PubMed ID: 26241158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous detection of multiple microRNAs for expression profiles of microRNAs in lung cancer cell lines by capillary electrophoresis with dual laser-induced fluorescence.
    Ban E; Chae DK; Song EJ
    J Chromatogr A; 2013 Nov; 1315():195-9. PubMed ID: 24094482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of the mature, but not precursor, RNA using a fluorescent DNA probe.
    Paiboonskuwong K; Kato Y
    Nucleic Acids Symp Ser (Oxf); 2006; (50):327-8. PubMed ID: 17150950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. mirExplorer: detecting microRNAs from genome and next generation sequencing data using the AdaBoost method with transition probability matrix and combined features.
    Guan DG; Liao JY; Qu ZH; Zhang Y; Qu LH
    RNA Biol; 2011; 8(5):922-34. PubMed ID: 21881406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative microRNA detection from precursor-microRNA-transfected hepatocellular carcinoma cells by capillary electrophoresis with dual-color laser-induced fluorescence.
    Yang TH; Ou DL; Hsu C; Huang SH; Chang PL
    Electrophoresis; 2012 Sep; 33(17):2769-76. PubMed ID: 22965724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-specific zeptomole microRNA detection by plasmonic nanowire interstice sensor with Bi-temperature hybridization.
    Kang T; Kim H; Lee JM; Lee H; Choi YS; Kang G; Seo MK; Chung BH; Jung Y; Kim B
    Small; 2014 Oct; 10(20):4200-6. PubMed ID: 24975681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.