These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 26098515)

  • 21. The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily.
    Lemieux MJ; Huang Y; Wang DN
    Curr Opin Struct Biol; 2004 Aug; 14(4):405-12. PubMed ID: 15313233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of AlphaFold2 to Predict MFS Protein Conformations after Selective Mutation.
    Xiao Q; Xu M; Wang W; Wu T; Zhang W; Qin W; Sun B
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lactose permease as a paradigm for membrane transport proteins (Review).
    Abramson J; Iwata S; Kaback HR
    Mol Membr Biol; 2004; 21(4):227-36. PubMed ID: 15371012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Glimpse of Membrane Transport through Structures-Advances in the Structural Biology of the GLUT Glucose Transporters.
    Yan N
    J Mol Biol; 2017 Aug; 429(17):2710-2725. PubMed ID: 28756087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.
    Tsigelny IF; Greenberg J; Kouznetsova V; Nigam SK
    J Bioinform Comput Biol; 2008 Oct; 6(5):885-904. PubMed ID: 18942157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The major facilitator superfamily (MFS) revisited.
    Reddy VS; Shlykov MA; Castillo R; Sun EI; Saier MH
    FEBS J; 2012 Jun; 279(11):2022-35. PubMed ID: 22458847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of Substrate Translocation in an Alternating Access Transporter.
    Latorraca NR; Fastman NM; Venkatakrishnan AJ; Frommer WB; Dror RO; Feng L
    Cell; 2017 Mar; 169(1):96-107.e12. PubMed ID: 28340354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. No single irreplaceable acidic residues in the Escherichia coli secondary multidrug transporter MdfA.
    Sigal N; Molshanski-Mor S; Bibi E
    J Bacteriol; 2006 Aug; 188(15):5635-9. PubMed ID: 16855255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural comparison of bacterial multidrug efflux pumps of the major facilitator superfamily.
    Ranaweera I; Shrestha U; Ranjana KC; Kakarla P; Willmon TM; Hernandez AJ; Mukherjee MM; Barr SR; Varela MF
    Trends Cell Mol Biol; 2015; 10():131-140. PubMed ID: 27065631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ins and Outs of Rocker Switch Mechanism in Major Facilitator Superfamily of Transporters.
    Sauve S; Williamson J; Polasa A; Moradi M
    Membranes (Basel); 2023 Apr; 13(5):. PubMed ID: 37233523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Major facilitator superfamily.
    Pao SS; Paulsen IT; Saier MH
    Microbiol Mol Biol Rev; 1998 Mar; 62(1):1-34. PubMed ID: 9529885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural conservation in the major facilitator superfamily as revealed by comparative modeling.
    Vardy E; Arkin IT; Gottschalk KE; Kaback HR; Schuldiner S
    Protein Sci; 2004 Jul; 13(7):1832-40. PubMed ID: 15215526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli.
    Lemieux MJ; Huang Y; Wang da N
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i43-6. PubMed ID: 16157640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. More Transporters, More Substrates: The Arabidopsis Major Facilitator Superfamily Revisited.
    Niño-González M; Novo-Uzal E; Richardson DN; Barros PM; Duque P
    Mol Plant; 2019 Sep; 12(9):1182-1202. PubMed ID: 31330327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integration of evolutionary features for the identification of functionally important residues in major facilitator superfamily transporters.
    Jeon J; Yang JS; Kim S
    PLoS Comput Biol; 2009 Oct; 5(10):e1000522. PubMed ID: 19798434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural insight into the PTS sugar transporter EIIC.
    McCoy JG; Levin EJ; Zhou M
    Biochim Biophys Acta; 2015 Mar; 1850(3):577-85. PubMed ID: 24657490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probable role for major facilitator superfamily domain containing 6 (MFSD6) in the brain during variable energy consumption.
    Bagchi S; Perland E; Hosseini K; Lundgren J; Al-Walai N; Kheder S; Fredriksson R
    Int J Neurosci; 2020 May; 130(5):476-489. PubMed ID: 31906755
    [No Abstract]   [Full Text] [Related]  

  • 38. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats.
    Radestock S; Forrest LR
    J Mol Biol; 2011 Apr; 407(5):698-715. PubMed ID: 21315728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and mechanism of a redesigned multidrug transporter from the Major Facilitator Superfamily.
    Wu HH; Symersky J; Lu M
    Sci Rep; 2020 Mar; 10(1):3949. PubMed ID: 32127561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alternating access mechanism in the POT family of oligopeptide transporters.
    Solcan N; Kwok J; Fowler PW; Cameron AD; Drew D; Iwata S; Newstead S
    EMBO J; 2012 Aug; 31(16):3411-21. PubMed ID: 22659829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.