BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26098593)

  • 1. Surface engineering on CeO₂ nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation.
    Gao W; Zhang Z; Li J; Ma Y; Qu Y
    Nanoscale; 2015 Jul; 7(27):11686-91. PubMed ID: 26098593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Textural, structural, and morphological characterizations and catalytic activity of nanosized CeO(2)-MO(x) (M=Mg(2+), Al(3+), Si(4+)) mixed oxides for CO oxidation.
    Yu Q; Wu X; Tang C; Qi L; Liu B; Gao F; Sun K; Dong L; Chen Y
    J Colloid Interface Sci; 2011 Feb; 354(1):341-52. PubMed ID: 21074167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods.
    Liu X; Zhou K; Wang L; Wang B; Li Y
    J Am Chem Soc; 2009 Mar; 131(9):3140-1. PubMed ID: 19215075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic Effect of Simultaneous Doping of Ceria Nanorods with Cu and Cr on CO Oxidation and NO Reduction.
    Rood SC; Pastor-Algaba O; Tosca-Princep A; Pinho B; Isaacs M; Torrente-Murciano L; Eslava S
    Chemistry; 2021 Jan; 27(6):2165-2174. PubMed ID: 33210814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure Regulations on the Surface Properties of CeO2 Nanorods and Their Catalytic Activity for CO Oxidation and Nitrile Hydrolysis Reactions.
    Li J; Zhang Z; Gao W; Zhang S; Ma Y; Qu Y
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22988-96. PubMed ID: 27534804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO oxidation on inverse CeO(x)/Cu(111) catalysts: high catalytic activity and ceria-promoted dissociation of O2.
    Yang F; Graciani J; Evans J; Liu P; Hrbek J; Sanz JF; Rodriguez JA
    J Am Chem Soc; 2011 Mar; 133(10):3444-51. PubMed ID: 21341793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms.
    Camellone MF; Fabris S
    J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chemical etching and reduction activation of CeO
    Wang Y; Wang R
    J Colloid Interface Sci; 2022 May; 613():836-846. PubMed ID: 35091258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of Ce3+ sites in chemically active colloidal ceria nanoparticles.
    Cafun JD; Kvashnina KO; Casals E; Puntes VF; Glatzel P
    ACS Nano; 2013 Dec; 7(12):10726-32. PubMed ID: 24215500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting NO
    Paidi VK; Savereide L; Childers DJ; Notestein JM; Roberts CA; van Lierop J
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30670-30678. PubMed ID: 28817777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Ni Doping at Atom Scale in Ceria and Assembling into Well-Defined Lotuslike Structure for Enhanced Catalytic Performance.
    Li Q; Huang Z; Guan P; Su R; Cao Q; Chao Y; Shen W; Guo J; Xu H; Che R
    ACS Appl Mater Interfaces; 2017 May; 9(19):16243-16251. PubMed ID: 28445645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman analysis of mode softening in nanoparticle CeO(2-δ) and Au-CeO(2-δ) during CO oxidation.
    Lee Y; He G; Akey AJ; Si R; Flytzani-Stephanopoulos M; Herman IP
    J Am Chem Soc; 2011 Aug; 133(33):12952-5. PubMed ID: 21780802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection.
    Tian Z; Li J; Zhang Z; Gao W; Zhou X; Qu Y
    Biomaterials; 2015 Aug; 59():116-24. PubMed ID: 25968461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of CeO2 and doped CeO2 with tailored oxygen vacancies for CO oxidation.
    Wang Z; Wang Q; Liao Y; Shen G; Gong X; Han N; Liu H; Chen Y
    Chemphyschem; 2011 Oct; 12(15):2763-70. PubMed ID: 21882333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dealloying process of core-shell Au@AuAg nanorods for porous nanorods with enhanced catalytic activity.
    Guo X; Ye W; Sun H; Zhang Q; Yang J
    Nanoscale; 2013 Dec; 5(24):12582-8. PubMed ID: 24172858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic, electronic and structural properties of Cu/CeO2 surfaces and interfaces from first-principles DFT+U calculations.
    Szabová L; Camellone MF; Huang M; Matolín V; Fabris S
    J Chem Phys; 2010 Dec; 133(23):234705. PubMed ID: 21186882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-Sensitive Facet Dependency in Etching of Ceria Nanocrystals Directly Observed by Liquid Cell TEM.
    Sung J; Choi BK; Kim B; Kim BH; Kim J; Lee D; Kim S; Kang K; Hyeon T; Park J
    J Am Chem Soc; 2019 Nov; 141(46):18395-18399. PubMed ID: 31644272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Healing of oxygen vacancies on reduced surfaces of gold-doped ceria.
    Nolan M
    J Chem Phys; 2009 Apr; 130(14):144702. PubMed ID: 19368460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of CeO2 doping on catalytic activity of Fe2O3/gamma-Al2O(3) catalyst for catalytic wet peroxide oxidation of azo dyes.
    Liu Y; Sun D
    J Hazard Mater; 2007 May; 143(1-2):448-54. PubMed ID: 17049725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.