These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26099019)

  • 1. Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry.
    Mehlin A; Xue F; Liang D; Du HF; Stolt MJ; Jin S; Tian ML; Poggio M
    Nano Lett; 2015 Jul; 15(7):4839-44. PubMed ID: 26099019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM.
    Yu X; DeGrave JP; Hara Y; Hara T; Jin S; Tokura Y
    Nano Lett; 2013 Aug; 13(8):3755-9. PubMed ID: 23899228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Chemical Vapor Deposition Growth of Cubic FeGe Nanowires That Support Stabilized Magnetic Skyrmions.
    Stolt MJ; Li ZA; Phillips B; Song D; Mathur N; Dunin-Borkowski RE; Jin S
    Nano Lett; 2017 Jan; 17(1):508-514. PubMed ID: 27936792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron Holography and Magnetotransport Measurements Reveal Stabilized Magnetic Skyrmions in Fe
    Mathur N; Stolt MJ; Niitsu K; Yu X; Shindo D; Tokura Y; Jin S
    ACS Nano; 2019 Jul; 13(7):7833-7841. PubMed ID: 31268671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect.
    Liang D; DeGrave JP; Stolt MJ; Tokura Y; Jin S
    Nat Commun; 2015 Sep; 6():8217. PubMed ID: 26400204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly stable skyrmion state in helimagnetic MnSi nanowires.
    Du H; DeGrave JP; Xue F; Liang D; Ning W; Yang J; Tian M; Zhang Y; Jin S
    Nano Lett; 2014; 14(4):2026-32. PubMed ID: 24628446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-space observation of skyrmion lattice in helimagnet MnSi thin samples.
    Tonomura A; Yu X; Yanagisawa K; Matsuda T; Onose Y; Kanazawa N; Park HS; Tokura Y
    Nano Lett; 2012 Mar; 12(3):1673-7. PubMed ID: 22360155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skyrmion Phase in MnSi Thin Films Grown on Sapphire by a Conventional Sputtering.
    Choi WY; Bang HW; Chun SH; Lee S; Jung MH
    Nanoscale Res Lett; 2021 Jan; 16(1):7. PubMed ID: 33409649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable Magnetic Skyrmion States at Room Temperature Confined to Corrals of Artificial Surface Pits Fabricated by a Focused Electron Beam.
    Matsumoto T; So YG; Kohno Y; Ikuhara Y; Shibata N
    Nano Lett; 2018 Feb; 18(2):754-762. PubMed ID: 29360375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires.
    Du H; Liang D; Jin C; Kong L; Stolt MJ; Ning W; Yang J; Xing Y; Wang J; Che R; Zang J; Jin S; Zhang Y; Tian M
    Nat Commun; 2015 Jul; 6():7637. PubMed ID: 26143867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skyrmion lattice structural transition in MnSi.
    Nakajima T; Oike H; Kikkawa A; Gilbert EP; Booth N; Kakurai K; Taguchi Y; Tokura Y; Kagawa F; Arima TH
    Sci Adv; 2017 Jun; 3(6):e1602562. PubMed ID: 28630906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single Chiral Skyrmions in Ultrathin Magnetic Films.
    Aranda AR; Guslienko KY
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of the Skyrmion Lattice in MnSi to Cubic Magnetocrystalline Anisotropies.
    Adams T; Garst M; Bauer A; Georgii R; Pfleiderer C
    Phys Rev Lett; 2018 Nov; 121(18):187205. PubMed ID: 30444411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization and Reversal of Skyrmion Lattice in Ta/CoFeB/MgO Multilayers.
    Qin Z; Wang Y; Zhu S; Jin C; Fu J; Liu Q; Cao J
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36556-36563. PubMed ID: 30277060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniaxial stress control of skyrmion phase.
    Nii Y; Nakajima T; Kikkawa A; Yamasaki Y; Ohishi K; Suzuki J; Taguchi Y; Arima T; Tokura Y; Iwasa Y
    Nat Commun; 2015 Oct; 6():8539. PubMed ID: 26460119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of size confinement on skyrmionic properties of MnSi nanomagnets.
    Das B; Balasubramanian B; Skomski R; Mukherjee P; Valloppilly SR; Hadjipanayis GC; Sellmyer DJ
    Nanoscale; 2018 May; 10(20):9504-9508. PubMed ID: 29498385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skyrmion lattice in a chiral magnet.
    Mühlbauer S; Binz B; Jonietz F; Pfleiderer C; Rosch A; Neubauer A; Georgii R; Böni P
    Science; 2009 Feb; 323(5916):915-9. PubMed ID: 19213914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable surface configuration of skyrmion lattices in cubic helimagnets.
    Wan X; Hu Y; Wang B
    J Phys Condens Matter; 2018 Jun; 30(24):245001. PubMed ID: 29726846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface anchoring as a control parameter for shaping skyrmion or toron properties in thin layers of chiral nematic liquid crystals and noncentrosymmetric magnets.
    Leonov AO
    Phys Rev E; 2021 Oct; 104(4-1):044701. PubMed ID: 34781482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Skyrmions and Skyrmion Clusters in the Helical Phase of Cu_{2}OSeO_{3}.
    Müller J; Rajeswari J; Huang P; Murooka Y; Rønnow HM; Carbone F; Rosch A
    Phys Rev Lett; 2017 Sep; 119(13):137201. PubMed ID: 29341720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.