These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26099110)

  • 1. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors.
    Griffin JM; Forse AC; Tsai WY; Taberna PL; Simon P; Grey CP
    Nat Mater; 2015 Aug; 14(8):812-9. PubMed ID: 26099110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-state NMR studies of supercapacitors.
    Griffin JM; Forse AC; Grey CP
    Solid State Nucl Magn Reson; 2016; 74-75():16-35. PubMed ID: 26974032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion counting in supercapacitor electrodes using NMR spectroscopy.
    Griffin JM; Forse AC; Wang H; Trease NM; Taberna PL; Simon P; Grey CP
    Faraday Discuss; 2014; 176():49-68. PubMed ID: 25591456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons.
    Tsai WY; Taberna PL; Simon P
    J Am Chem Soc; 2014 Jun; 136(24):8722-8. PubMed ID: 24869895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Characterization of Single Layer Graphene/Electrolyte Interface: Effect of Solvent on the Interfacial Capacitance.
    Wu YC; Ye J; Jiang G; Ni K; Shu N; Taberna PL; Zhu Y; Simon P
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13317-13322. PubMed ID: 33555100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring.
    Shpigel N; Levi MD; Sigalov S; Daikhin L; Aurbach D
    Acc Chem Res; 2018 Jan; 51(1):69-79. PubMed ID: 29297669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors.
    Dou Q; Liu L; Yang B; Lang J; Yan X
    Nat Commun; 2017 Dec; 8(1):2188. PubMed ID: 29259171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Electrolyte Ion Size Effects on the Performance of Conducting Metal-Organic Framework Supercapacitors.
    Gittins JW; Ge K; Balhatchet CJ; Taberna PL; Simon P; Forse AC
    J Am Chem Soc; 2024 May; 146(18):12473-12484. PubMed ID: 38716517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing Ion Adsorption and Charging Mechanisms in Layered Metal-Organic Framework Supercapacitors with Solid-State Nuclear Magnetic Resonance.
    Balhatchet CJ; Gittins JW; Shin SJ; Ge K; Liu X; Trisukhon T; Sharma S; Kress T; Taberna PL; Simon P; Walsh A; Forse AC
    J Am Chem Soc; 2024 Aug; 146(33):23171-23181. PubMed ID: 39133641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR.
    Deschamps M; Gilbert E; Azais P; Raymundo-Piñero E; Ammar MR; Simon P; Massiot D; Béguin F
    Nat Mater; 2013 Apr; 12(4):351-8. PubMed ID: 23416727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry.
    Richey FW; Dyatkin B; Gogotsi Y; Elabd YA
    J Am Chem Soc; 2013 Aug; 135(34):12818-26. PubMed ID: 23915377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon.
    Forse AC; Griffin JM; Wang H; Trease NM; Presser V; Gogotsi Y; Simon P; Grey CP
    Phys Chem Chem Phys; 2013 May; 15(20):7722-30. PubMed ID: 23595510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism.
    Wang H; Forse AC; Griffin JM; Trease NM; Trognko L; Taberna PL; Simon P; Grey CP
    J Am Chem Soc; 2013 Dec; 135(50):18968-80. PubMed ID: 24274637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen Codoped Unique Carbon with 0.4 nm Ultra-Micropores for Ultrahigh Areal Capacitance Supercapacitors.
    Zhou J; Hou L; Luan S; Zhu J; Gou H; Wang D; Gao F
    Small; 2018 Sep; 14(36):e1801897. PubMed ID: 30091511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of electrical double layers in organic electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2010; 12(20):5468-79. PubMed ID: 20467670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Perspectives on the Charging Mechanisms of Supercapacitors.
    Forse AC; Merlet C; Griffin JM; Grey CP
    J Am Chem Soc; 2016 May; 138(18):5731-44. PubMed ID: 27031622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge Storage Mechanisms of Single-Layer Graphene in Ionic Liquid.
    Ye J; Wu YC; Xu K; Ni K; Shu N; Taberna PL; Zhu Y; Simon P
    J Am Chem Soc; 2019 Oct; 141(42):16559-16563. PubMed ID: 31588740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage.
    Levi MD; Salitra G; Levy N; Aurbach D; Maier J
    Nat Mater; 2009 Nov; 8(11):872-5. PubMed ID: 19838184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.