BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 26099271)

  • 1. Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development.
    Pattison RJ; Csukasi F; Zheng Y; Fei Z; van der Knaap E; Catalá C
    Plant Physiol; 2015 Aug; 168(4):1684-701. PubMed ID: 26099271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening.
    Shinozaki Y; Nicolas P; Fernandez-Pozo N; Ma Q; Evanich DJ; Shi Y; Xu Y; Zheng Y; Snyder SI; Martin LBB; Ruiz-May E; Thannhauser TW; Chen K; Domozych DS; Catalá C; Fei Z; Mueller LA; Giovannoni JJ; Rose JKC
    Nat Commun; 2018 Jan; 9(1):364. PubMed ID: 29371663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification of pistil-specific genes expressed during fruit set initiation in tomato (Solanum lycopersicum).
    Ezura K; Ji-Seong K; Mori K; Suzuki Y; Kuhara S; Ariizumi T; Ezura H
    PLoS One; 2017; 12(7):e0180003. PubMed ID: 28683065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal transcriptome provides insights into early fruit development of tomato (Solanum lycopersicum).
    Zhang S; Xu M; Qiu Z; Wang K; Du Y; Gu L; Cui X
    Sci Rep; 2016 Mar; 6():23173. PubMed ID: 26988970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development.
    Ferreira e Silva GF; Silva EM; Azevedo Mda S; Guivin MA; Ramiro DA; Figueiredo CR; Carrer H; Peres LE; Nogueira FT
    Plant J; 2014 May; 78(4):604-18. PubMed ID: 24580734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network Analyses Reveal Shifts in Transcript Profiles and Metabolites That Accompany the Expression of SUN and an Elongated Tomato Fruit.
    Clevenger JP; Van Houten J; Blackwood M; Rodríguez GR; Jikumaru Y; Kamiya Y; Kusano M; Saito K; Visa S; van der Knaap E
    Plant Physiol; 2015 Jul; 168(3):1164-78. PubMed ID: 25941316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development.
    Mounet F; Moing A; Garcia V; Petit J; Maucourt M; Deborde C; Bernillon S; Le Gall G; Colquhoun I; Defernez M; Giraudel JL; Rolin D; Rothan C; Lemaire-Chamley M
    Plant Physiol; 2009 Mar; 149(3):1505-28. PubMed ID: 19144766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set.
    Vriezen WH; Feron R; Maretto F; Keijman J; Mariani C
    New Phytol; 2008; 177(1):60-76. PubMed ID: 18028300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development.
    Mounet F; Moing A; Kowalczyk M; Rohrmann J; Petit J; Garcia V; Maucourt M; Yano K; Deborde C; Aoki K; Bergès H; Granell A; Fernie AR; Bellini C; Rothan C; Lemaire-Chamley M
    J Exp Bot; 2012 Aug; 63(13):4901-17. PubMed ID: 22844095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development.
    Tang X; Tang Z; Huang S; Liu J; Liu J; Shi W; Tian X; Li Y; Zhang D; Yang J; Gao Y; Zeng D; Hou P; Niu X; Cao Y; Li G; Li X; Xiao F; Liu Y
    Planta; 2013 Nov; 238(5):923-36. PubMed ID: 23948801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development.
    de Jong M; Wolters-Arts M; Schimmel BC; Stultiens CL; de Groot PF; Powers SJ; Tikunov YM; Bovy AG; Mariani C; Vriezen WH; Rieu I
    J Exp Bot; 2015 Jun; 66(11):3405-16. PubMed ID: 25883382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families.
    Pattison RJ; Catalá C
    Plant J; 2012 May; 70(4):585-98. PubMed ID: 22211518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue- and cell-type specific transcriptome profiling of expanding tomato fruit provides insights into metabolic and regulatory specialization and cuticle formation.
    Matas AJ; Yeats TH; Buda GJ; Zheng Y; Chatterjee S; Tohge T; Ponnala L; Adato A; Aharoni A; Stark R; Fernie AR; Fei Z; Giovannoni JJ; Rose JK
    Plant Cell; 2011 Nov; 23(11):3893-910. PubMed ID: 22045915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape.
    Xiao H; Radovich C; Welty N; Hsu J; Li D; Meulia T; van der Knaap E
    BMC Plant Biol; 2009 May; 9():49. PubMed ID: 19422692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis.
    Ren Z; Li Z; Miao Q; Yang Y; Deng W; Hao Y
    J Exp Bot; 2011 May; 62(8):2815-26. PubMed ID: 21266497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato.
    Lemaire-Chamley M; Petit J; Garcia V; Just D; Baldet P; Germain V; Fagard M; Mouassite M; Cheniclet C; Rothan C
    Plant Physiol; 2005 Oct; 139(2):750-69. PubMed ID: 16183847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maturity and ripening-stage specific modulation of tomato (Solanum lycopersicum) fruit transcriptome.
    Srivastava A; Gupta AK; Datsenka T; Mattoo AK; Handa AK
    GM Crops; 2010; 1(4):237-49. PubMed ID: 21844679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development.
    Carrera E; Ruiz-Rivero O; Peres LE; Atares A; Garcia-Martinez JL
    Plant Physiol; 2012 Nov; 160(3):1581-96. PubMed ID: 22942390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome Profiling of Tomato Fruit Development Reveals Transcription Factors Associated with Ascorbic Acid, Carotenoid and Flavonoid Biosynthesis.
    Ye J; Hu T; Yang C; Li H; Yang M; Ijaz R; Ye Z; Zhang Y
    PLoS One; 2015; 10(7):e0130885. PubMed ID: 26133783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silencing Sl-EBF1 and Sl-EBF2 expression causes constitutive ethylene response phenotype, accelerated plant senescence, and fruit ripening in tomato.
    Yang Y; Wu Y; Pirrello J; Regad F; Bouzayen M; Deng W; Li Z
    J Exp Bot; 2010 Mar; 61(3):697-708. PubMed ID: 19903730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.