BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1177 related articles for article (PubMed ID: 26099273)

  • 21. Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model.
    Jeong H; Qian X; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):395. PubMed ID: 27766938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A random forest classifier predicts recurrence risk in patients with ovarian cancer.
    Cheng L; Li L; Wang L; Li X; Xing H; Zhou J
    Mol Med Rep; 2018 Sep; 18(3):3289-3297. PubMed ID: 30066910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of the proteomic cancer co-expression sub networks by using association estimators.
    Erdoğan C; Kurt Z; Diri B
    PLoS One; 2017; 12(11):e0188016. PubMed ID: 29145449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-protein interaction network construction for cancer using a new L1/2-penalized Net-SVM model.
    Chai H; Huang HH; Jiang HK; Liang Y; Xia LY
    Genet Mol Res; 2016 Jul; 15(3):. PubMed ID: 27525863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene regulation network inference using k-nearest neighbor-based mutual information estimation: revisiting an old DREAM.
    Shachaf LI; Roberts E; Cahan P; Xiao J
    BMC Bioinformatics; 2023 Mar; 24(1):84. PubMed ID: 36879188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.
    Luo J; Liang S
    J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of dynamic protein complexes through Markov Clustering based on Elephant Herd Optimization Approach.
    Rani RR; Ramyachitra D; Brindhadevi A
    Sci Rep; 2019 Jul; 9(1):11106. PubMed ID: 31366992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Joint clustering of protein interaction networks through Markov random walk.
    Wang Y; Qian X
    BMC Syst Biol; 2014; 8 Suppl 1(Suppl 1):S9. PubMed ID: 24565376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of significantly mutated subnetworks in the breast cancer genome.
    Ajwad R; Domaratzki M; Liu Q; Feizi N; Hu P
    Sci Rep; 2021 Jan; 11(1):642. PubMed ID: 33436820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of dynamic probabilistic protein interaction networks for protein complex identification.
    Zhang Y; Lin H; Yang Z; Wang J
    BMC Bioinformatics; 2016 Apr; 17(1):186. PubMed ID: 27117946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K; Pavlopoulou N; Papasavvas C; Likothanassis S; Dimitrakopoulos C; Georgopoulos E; Moschopoulos C; Mavroudi S
    Artif Intell Med; 2015 Mar; 63(3):181-9. PubMed ID: 25765008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topologically inferring pathway activity for precise survival outcome prediction: breast cancer as a case.
    Liu W; Wang W; Tian G; Xie W; Lei L; Liu J; Huang W; Xu L; Li E
    Mol Biosyst; 2017 Feb; 13(3):537-548. PubMed ID: 28098303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probabilistic model of the human protein-protein interaction network.
    Rhodes DR; Tomlins SA; Varambally S; Mahavisno V; Barrette T; Kalyana-Sundaram S; Ghosh D; Pandey A; Chinnaiyan AM
    Nat Biotechnol; 2005 Aug; 23(8):951-9. PubMed ID: 16082366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DECODE: an integrated differential co-expression and differential expression analysis of gene expression data.
    Lui TW; Tsui NB; Chan LW; Wong CS; Siu PM; Yung BY
    BMC Bioinformatics; 2015 May; 16():182. PubMed ID: 26026612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of protein complexes from multi-relationship protein interaction networks.
    Li X; Wang J; Zhao B; Wu FX; Pan Y
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):17. PubMed ID: 27461193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer.
    Peng C; Ma W; Xia W; Zheng W
    Mol Med Rep; 2017 Mar; 15(3):1087-1094. PubMed ID: 28075450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases.
    Mezlini AM; Goldenberg A
    PLoS Comput Biol; 2017 Oct; 13(10):e1005580. PubMed ID: 29023450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combinatorial Detection of Conserved Alteration Patterns for Identifying Cancer Subnetworks.
    Hodzic E; Shrestha R; Zhu K; Cheng K; Collins CC; Cenk Sahinalp S
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 30978274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The study on the characters of membrane protein interaction and its network based on integrated intelligence method].
    Shen Y; Ding Y; Hao K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Aug; 28(4):658-62. PubMed ID: 21936357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 59.