These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
600 related articles for article (PubMed ID: 26099332)
21. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Beckers V; Poblete-Castro I; Tomasch J; Wittmann C Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075 [TBL] [Abstract][Full Text] [Related]
22. An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440. Wang Y; Zhang C; Gong T; Zuo Z; Zhao F; Fan X; Yang C; Song C J Microbiol Methods; 2015 Jun; 113():27-33. PubMed ID: 25828098 [TBL] [Abstract][Full Text] [Related]
23. Genome reduction boosts heterologous gene expression in Pseudomonas putida. Lieder S; Nikel PI; de Lorenzo V; Takors R Microb Cell Fact; 2015 Feb; 14():23. PubMed ID: 25890048 [TBL] [Abstract][Full Text] [Related]
24. Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Tavares LF; Silva PM; Junqueira M; Mariano DC; Nogueira FC; Domont GB; Freire DM; Neves BC Appl Microbiol Biotechnol; 2013 Mar; 97(5):1909-21. PubMed ID: 23053103 [TBL] [Abstract][Full Text] [Related]
25. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. Puchałka J; Oberhardt MA; Godinho M; Bielecka A; Regenhardt D; Timmis KN; Papin JA; Martins dos Santos VA PLoS Comput Biol; 2008 Oct; 4(10):e1000210. PubMed ID: 18974823 [TBL] [Abstract][Full Text] [Related]
26. The Continuing Development of E. coli as a Heterologous Host for Complex Natural Product Biosynthesis. Zhang H; Fang L; Osburne MS; Pfeifer BA Methods Mol Biol; 2016; 1401():121-34. PubMed ID: 26831705 [TBL] [Abstract][Full Text] [Related]
27. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Martínez-García E; Nikel PI; Aparicio T; de Lorenzo V Microb Cell Fact; 2014 Nov; 13():159. PubMed ID: 25384394 [TBL] [Abstract][Full Text] [Related]
28. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. Lee JH; Wendisch VF J Biotechnol; 2017 Sep; 257():211-221. PubMed ID: 27871872 [TBL] [Abstract][Full Text] [Related]
29. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase. Gemperlein K; Zipf G; Bernauer HS; Müller R; Wenzel SC Metab Eng; 2016 Jan; 33():98-108. PubMed ID: 26617065 [TBL] [Abstract][Full Text] [Related]
30. Bio-production of high-purity propionate by engineering L-threonine degradation pathway in Pseudomonas putida. Ma C; Mu Q; Wang L; Shi Y; Zhu L; Zhang S; Xue Y; Tao Y; Ma Y; Yu B Appl Microbiol Biotechnol; 2020 Jun; 104(12):5303-5313. PubMed ID: 32333052 [TBL] [Abstract][Full Text] [Related]
31. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Rehm BH; Mitsky TA; Steinbüchel A Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728 [TBL] [Abstract][Full Text] [Related]
32. Surface Display of Designer Protein Scaffolds on Genome-Reduced Strains of Dvořák P; Bayer EA; de Lorenzo V ACS Synth Biol; 2020 Oct; 9(10):2749-2764. PubMed ID: 32877604 [TBL] [Abstract][Full Text] [Related]
33. Metabolic engineering of microorganisms for the synthesis of plant natural products. Marienhagen J; Bott M J Biotechnol; 2013 Jan; 163(2):166-78. PubMed ID: 22687248 [TBL] [Abstract][Full Text] [Related]
34. Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review. Bilal M; Guo S; Iqbal HMN; Hu H; Wang W; Zhang X World J Microbiol Biotechnol; 2017 Oct; 33(10):191. PubMed ID: 28975557 [TBL] [Abstract][Full Text] [Related]
35. Fungal extrolites as a new source for therapeutic compounds and as building blocks for applications in synthetic biology. Leitão AL; Enguita FJ Microbiol Res; 2014; 169(9-10):652-65. PubMed ID: 24636745 [TBL] [Abstract][Full Text] [Related]
36. Recent advances in microbial production of aromatic natural products and their derivatives. Wang J; Shen X; Rey J; Yuan Q; Yan Y Appl Microbiol Biotechnol; 2018 Jan; 102(1):47-61. PubMed ID: 29127467 [TBL] [Abstract][Full Text] [Related]
38. A microbial biomanufacturing platform for natural and semisynthetic opioids. Thodey K; Galanie S; Smolke CD Nat Chem Biol; 2014 Oct; 10(10):837-44. PubMed ID: 25151135 [TBL] [Abstract][Full Text] [Related]
39. Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory. Kwon YM; Kim KW; Choi TY; Kim SY; Kim JYH World J Microbiol Biotechnol; 2018 Nov; 34(12):183. PubMed ID: 30478596 [TBL] [Abstract][Full Text] [Related]
40. From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions. Nikel PI; Chavarría M; Danchin A; de Lorenzo V Curr Opin Chem Biol; 2016 Oct; 34():20-29. PubMed ID: 27239751 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]