BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 26099345)

  • 1. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model.
    Lin K; Liu Y; Huang H; Chen L; Wang Z; Chang J
    J Mater Sci Mater Med; 2015 Jun; 26(6):197. PubMed ID: 26099345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of calcium silicate on in vitro physiochemical properties and in vivo osteogenesis, degradability and bioactivity of porous β-tricalcium phosphate bioceramics.
    Liu S; Jin F; Lin K; Lu J; Sun J; Chang J; Dai K; Fan C
    Biomed Mater; 2013 Apr; 8(2):025008. PubMed ID: 23428666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration.
    Zhang J; Zhou H; Yang K; Yuan Y; Liu C
    Biomaterials; 2013 Dec; 34(37):9381-92. PubMed ID: 24044997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of water glass coating of tricalcium phosphate granules on in vivo bone formation.
    Ryu SM; Ahn MW; Park CH; Lee GW; Song IH; Ahn HS; Kim J; Kim S
    J Biomater Appl; 2018 Nov; 33(5):662-672. PubMed ID: 30396326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and in vivo evaluation of a scaffold containing wollastonite/β-TCP for bone repair in a rabbit tibial defect model.
    Barbosa WT; de Almeida KV; de Lima GG; Rodriguez MA; Lia Fook MV; García-Carrodeguas R; Amaro da Silva Junior V; de Sousa Segundo FA; de Sá MJC
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):1107-1116. PubMed ID: 31393675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of silicate incorporation on in vivo responses of α-tricalcium phosphate ceramics.
    Kamitakahara M; Tatsukawa E; Shibata Y; Umemoto S; Yokoi T; Ioku K; Ikeda T
    J Mater Sci Mater Med; 2016 May; 27(5):97. PubMed ID: 27003839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria.
    Manchón A; Hamdan Alkhraisat M; Rueda-Rodriguez C; Prados-Frutos JC; Torres J; Lucas-Aparicio J; Ewald A; Gbureck U; López-Cabarcos E
    Biomed Mater; 2015 Oct; 10(5):055012. PubMed ID: 26481113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone.
    Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J
    Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The in vivo osteogenesis of Mg or Zr-modified silicate-based bioceramic spheres.
    Luo T; Wu C; Zhang Y
    J Biomed Mater Res A; 2012 Sep; 100(9):2269-77. PubMed ID: 22499392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and in vivo evaluation of a silicate-based composite bone cement.
    Ma B; Huan Z; Xu C; Ma N; Zhu H; Zhong J; Chang J
    J Biomater Appl; 2017 Aug; 32(2):257-264. PubMed ID: 28622750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.
    Wu C
    Expert Rev Med Devices; 2009 May; 6(3):237-41. PubMed ID: 19419281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics.
    Xie L; Yu H; Deng Y; Yang W; Liao L; Long Q
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1007-1015. PubMed ID: 26652459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-engineered bone formation in vivo for artificial laminae of the vertebral arch using β-tricalcium phosphate bioceramics seeded with mesenchymal stem cells.
    Dong Y; Chen X; Hong Y
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1300-6. PubMed ID: 23873227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.