These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26099362)

  • 1. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.
    Nozawa T; Takagi H; Watanabe K; Arakawa Y
    Nano Lett; 2015 Jul; 15(7):4483-7. PubMed ID: 26099362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient two-step photocarrier generation in bias-controlled InAs/GaAs quantum dot superlattice intermediate-band solar cells.
    Kada T; Asahi S; Kaizu T; Harada Y; Tamaki R; Okada Y; Kita T
    Sci Rep; 2017 Jul; 7(1):5865. PubMed ID: 28724895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of hot-carrier relaxation for realizing ideal quantum-dot intermediate-band solar cells.
    Tex DM; Kamiya I; Kanemitsu Y
    Sci Rep; 2014 Feb; 4():4125. PubMed ID: 24535195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of growth temperature and quantum structure on InAs/GaAs quantum dot solar cell.
    Park MH; Kim HS; Park SJ; Song JD; Kim SH; Lee YJ; Choi WJ; Park JH
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2955-9. PubMed ID: 24734716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adiabatic two-step photoexcitation effects in intermediate-band solar cells with quantum dot-in-well structure.
    Asahi S; Kaizu T; Kita T
    Sci Rep; 2019 May; 9(1):7859. PubMed ID: 31133644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.
    Martí A; Antolín E; Stanley CR; Farmer CD; López N; Díaz P; Cánovas E; Linares PG; Luque A
    Phys Rev Lett; 2006 Dec; 97(24):247701. PubMed ID: 17280325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of plasmonic quantum-dot-based intermediate band solar cells.
    Foroutan S; Baghban H
    Appl Opt; 2016 May; 55(13):3405-12. PubMed ID: 27140348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process.
    Liu WS; Chu TF; Huang TH
    Opt Express; 2014 Dec; 22(25):30963-74. PubMed ID: 25607045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External-quantum-efficiency enhancement in quantum-dot solar cells with a Fabry-Perot light-trapping structure.
    Oteki Y; Okada Y
    Heliyon; 2023 Aug; 9(8):e19312. PubMed ID: 37664730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InAs quantum dot arrays decorating the facets of GaAs nanowires.
    Uccelli E; Arbiol J; Morante JR; Fontcuberta i Morral A
    ACS Nano; 2010 Oct; 4(10):5985-93. PubMed ID: 20839804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolithic Integration of O-Band InAs Quantum Dot Lasers with Engineered GaAs Virtual Substrate Based on Silicon.
    Xu B; Wang G; Du Y; Miao Y; Li B; Zhao X; Lin H; Yu J; Su J; Dong Y; Ye T; Radamson HH
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InAs/InGaAs Quantum Dot Lasers on Multi-Functional Metamorphic Buffer Layers.
    Kwoen J; Imoto T; Arakawa Y
    Opt Express; 2021 Aug; 29(18):29378-29386. PubMed ID: 34615048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Study of Photoelectric Properties of Metamorphic InAs/InGaAs and InAs/GaAs Quantum Dot Structures.
    Golovynskyi S; Seravalli L; Datsenko O; Trevisi G; Frigeri P; Gombia E; Golovynska I; Kondratenko SV; Qu J; Ohulchanskyy TY
    Nanoscale Res Lett; 2017 Dec; 12(1):335. PubMed ID: 28482647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guided-mode resonance gratings for enhanced mid-infrared absorption in quantum dot intermediate-band solar cells.
    Elsehrawy F; Niemi T; Cappelluti F
    Opt Express; 2018 Mar; 26(6):A352-A359. PubMed ID: 29609305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. InAs/GaAs quantum dot laser epitaxially grown on on-axis (001) GaAsOI substrate.
    Liang H; Jin T; Chi C; Sun J; Zhang X; You T; Zhou M; Lin J; Wang S
    Opt Express; 2021 Nov; 29(23):38465-38476. PubMed ID: 34808899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin-film InAs/GaAs quantum dot solar cell with planar and pyramidal back reflectors.
    Aho T; Elsehrawy F; Tukiainen A; Ranta S; Raappana M; Isoaho R; Aho A; Hietalahti A; Cappelluti F; Guina M
    Appl Opt; 2020 Jul; 59(21):6304-6308. PubMed ID: 32749293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediate-band dynamics of quantum dots solar cell in concentrator photovoltaic modules.
    Sogabe T; Shoji Y; Ohba M; Yoshida K; Tamaki R; Hong HF; Wu CH; Kuo CT; Tomić S; Okada Y
    Sci Rep; 2014 Apr; 4():4792. PubMed ID: 24762433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards InAs/InGaAs/GaAs Quantum Dot Solar Cells Directly Grown on Si Substrate.
    Azeza B; Hadj Alouane MH; Ilahi B; Patriarche G; Sfaxi L; Fouzri A; Maaref H; M'ghaieth R
    Materials (Basel); 2015 Jul; 8(7):4544-4552. PubMed ID: 28793455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.
    Su XB; Ding Y; Ma B; Zhang KL; Chen ZS; Li JL; Cui XR; Xu YQ; Ni HQ; Niu ZC
    Nanoscale Res Lett; 2018 Feb; 13(1):59. PubMed ID: 29468483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.