These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 26099433)
1. TDP-35 sequesters TDP-43 into cytoplasmic inclusions through binding with RNA. Che MX; Jiang LL; Li HY; Jiang YJ; Hu HY FEBS Lett; 2015 Jul; 589(15):1920-8. PubMed ID: 26099433 [TBL] [Abstract][Full Text] [Related]
2. Aggregation of the 35-kDa fragment of TDP-43 causes formation of cytoplasmic inclusions and alteration of RNA processing. Che MX; Jiang YJ; Xie YY; Jiang LL; Hu HY FASEB J; 2011 Jul; 25(7):2344-53. PubMed ID: 21450909 [TBL] [Abstract][Full Text] [Related]
3. RNA-assisted sequestration of RNA-binding proteins by cytoplasmic inclusions of the C-terminal 35-kDa fragment of TDP-43. Jiang LL; Guan WL; Wang JY; Zhang SX; Hu HY J Cell Sci; 2022 Mar; 135(6):. PubMed ID: 35142363 [TBL] [Abstract][Full Text] [Related]
4. RNP2 of RNA recognition motif 1 plays a central role in the aberrant modification of TDP-43. Takagi S; Iguchi Y; Katsuno M; Ishigaki S; Ikenaka K; Fujioka Y; Honda D; Niwa J; Tanaka F; Watanabe H; Adachi H; Sobue G PLoS One; 2013; 8(6):e66966. PubMed ID: 23840565 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence in-situ hybridization method reveals that carboxyl-terminal fragments of transactive response DNA-binding protein-43 truncated at the amino acid residue 218 reduce poly(A)+ RNA expression. Higashi S; Watanabe R; Arai T Neuroreport; 2018 Jul; 29(10):846-851. PubMed ID: 29742622 [TBL] [Abstract][Full Text] [Related]
7. Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Nonaka T; Kametani F; Arai T; Akiyama H; Hasegawa M Hum Mol Genet; 2009 Sep; 18(18):3353-64. PubMed ID: 19515851 [TBL] [Abstract][Full Text] [Related]
8. Folding of the RNA recognition motif (RRM) domains of the amyotrophic lateral sclerosis (ALS)-linked protein TDP-43 reveals an intermediate state. Mackness BC; Tran MT; McClain SP; Matthews CR; Zitzewitz JA J Biol Chem; 2014 Mar; 289(12):8264-76. PubMed ID: 24497641 [TBL] [Abstract][Full Text] [Related]
9. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. Winton MJ; Igaz LM; Wong MM; Kwong LK; Trojanowski JQ; Lee VM J Biol Chem; 2008 May; 283(19):13302-9. PubMed ID: 18305110 [TBL] [Abstract][Full Text] [Related]
10. Aberrant assembly of RNA recognition motif 1 links to pathogenic conversion of TAR DNA-binding protein of 43 kDa (TDP-43). Shodai A; Morimura T; Ido A; Uchida T; Ayaki T; Takahashi R; Kitazawa S; Suzuki S; Shirouzu M; Kigawa T; Muto Y; Yokoyama S; Takahashi R; Kitahara R; Ito H; Fujiwara N; Urushitani M J Biol Chem; 2013 May; 288(21):14886-905. PubMed ID: 23558684 [TBL] [Abstract][Full Text] [Related]
11. TDP-43 cytoplasmic inclusion formation is disrupted in Lee SM; Asress S; Hales CM; Gearing M; Vizcarra JC; Fournier CN; Gutman DA; Chin LS; Li L; Glass JD Brain Commun; 2019; 1(1):fcz014. PubMed ID: 31633109 [TBL] [Abstract][Full Text] [Related]
12. Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Xiao S; Sanelli T; Chiang H; Sun Y; Chakrabartty A; Keith J; Rogaeva E; Zinman L; Robertson J Acta Neuropathol; 2015 Jul; 130(1):49-61. PubMed ID: 25788357 [TBL] [Abstract][Full Text] [Related]
13. Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. Liu-Yesucevitz L; Bilgutay A; Zhang YJ; Vanderweyde T; Citro A; Mehta T; Zaarur N; McKee A; Bowser R; Sherman M; Petrucelli L; Wolozin B PLoS One; 2010 Oct; 5(10):e13250. PubMed ID: 20948999 [TBL] [Abstract][Full Text] [Related]
14. Gel-like inclusions of C-terminal fragments of TDP-43 sequester stalled proteasomes in neurons. Riemenschneider H; Guo Q; Bader J; Frottin F; Farny D; Kleinberger G; Haass C; Mann M; Hartl FU; Baumeister W; Hipp MS; Meissner F; Fernández-Busnadiego R; Edbauer D EMBO Rep; 2022 Jun; 23(6):e53890. PubMed ID: 35438230 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43). Prakash A; Kumar V; Meena NK; Hassan MI; Lynn AM J Biomol Struct Dyn; 2019 Jan; 37(1):178-194. PubMed ID: 29279008 [TBL] [Abstract][Full Text] [Related]
16. Molecular properties of TAR DNA binding protein-43 fragments are dependent upon its cleavage site. Furukawa Y; Kaneko K; Nukina N Biochim Biophys Acta; 2011 Dec; 1812(12):1577-83. PubMed ID: 21946215 [TBL] [Abstract][Full Text] [Related]
17. A "two-hit" hypothesis for inclusion formation by carboxyl-terminal fragments of TDP-43 protein linked to RNA depletion and impaired microtubule-dependent transport. Pesiridis GS; Tripathy K; Tanik S; Trojanowski JQ; Lee VM J Biol Chem; 2011 May; 286(21):18845-55. PubMed ID: 21454607 [TBL] [Abstract][Full Text] [Related]
18. Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1. Brady OA; Meng P; Zheng Y; Mao Y; Hu F J Neurochem; 2011 Jan; 116(2):248-59. PubMed ID: 21062285 [TBL] [Abstract][Full Text] [Related]
19. Frontotemporal dementia-linked P112H mutation of TDP-43 induces protein structural change and impairs its RNA binding function. Agrawal S; Jain M; Yang WZ; Yuan HS Protein Sci; 2021 Feb; 30(2):350-365. PubMed ID: 33151007 [TBL] [Abstract][Full Text] [Related]
20. Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination. Dammer EB; Fallini C; Gozal YM; Duong DM; Rossoll W; Xu P; Lah JJ; Levey AI; Peng J; Bassell GJ; Seyfried NT PLoS One; 2012; 7(6):e38658. PubMed ID: 22761693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]