These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26099437)

  • 41. 1,1,1-trichloroethane and 1,1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture.
    Grostern A; Chan WW; Edwards EA
    Environ Sci Technol; 2009 Sep; 43(17):6799-807. PubMed ID: 19764252
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioelectrochemical approach for reductive and oxidative dechlorination of chlorinated aliphatic hydrocarbons (CAHs).
    Lai A; Aulenta F; Mingazzini M; Palumbo MT; Papini MP; Verdini R; Majone M
    Chemosphere; 2017 Feb; 169():351-360. PubMed ID: 27886537
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electron Fluxes in Biocathode Bioelectrochemical Systems Performing Dechlorination of Chlorinated Aliphatic Hydrocarbons.
    Chen F; Li Z; Yang J; Liang B; Huang C; Cai W; Nan J; Wang A
    Front Microbiol; 2018; 9():2306. PubMed ID: 30323798
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tetrachloroethene conversion to ethene by a Dehalococcoides-containing enrichment culture from Bitterfeld.
    Cichocka D; Nikolausz M; Haest PJ; Nijenhuis I
    FEMS Microbiol Ecol; 2010 May; 72(2):297-310. PubMed ID: 20507364
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources.
    Schneidewind U; Haest PJ; Atashgahi S; Maphosa F; Hamonts K; Maesen M; Calderer M; Seuntjens P; Smidt H; Springael D; Dejonghe W
    J Contam Hydrol; 2014 Feb; 157():25-36. PubMed ID: 24275111
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stable carbon isotope enrichment factors for cis-1,2-dichloroethene and vinyl chloride reductive dechlorination by Dehalococcoides.
    Fletcher KE; Nijenhuis I; Richnow HH; Löffler FE
    Environ Sci Technol; 2011 Apr; 45(7):2951-7. PubMed ID: 21391634
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Managing methanogens and homoacetogens to promote reductive dechlorination of trichloroethene with direct delivery of H2 in a membrane biofilm reactor.
    Ziv-El M; Popat SC; Cai K; Halden RU; Krajmalnik-Brown R; Rittmann BE
    Biotechnol Bioeng; 2012 Sep; 109(9):2200-10. PubMed ID: 22392141
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complete lab-scale detoxification of groundwater containing 1,2-dichloroethane.
    De Wildeman S; Linthout G; Van Langenhove H; Verstraete W
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):609-12. PubMed ID: 14566429
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators.
    Aulenta F; Canosa A; Reale P; Rossetti S; Panero S; Majone M
    Biotechnol Bioeng; 2009 May; 103(1):85-91. PubMed ID: 19160378
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia.
    Pham H; Boon N; Marzorati M; Verstraete W
    Water Res; 2009 Jun; 43(11):2936-46. PubMed ID: 19443006
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions.
    van der Zaan B; de Weert J; Rijnaarts H; de Vos WM; Smidt H; Gerritse J
    Water Res; 2009 Jul; 43(13):3207-16. PubMed ID: 19501382
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.
    Saheb-Alam S; Singh A; Hermansson M; Persson F; Schnürer A; Wilén BM; Modin O
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222104
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of chloroethene concentrations and granular activated carbon on reductive dechlorination rates and growth of Dehalococcoides spp.
    Aktaş Ö; Schmidt KR; Mungenast S; Stoll C; Tiehm A
    Bioresour Technol; 2012 Jan; 103(1):286-92. PubMed ID: 22044603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular biomarker-based biokinetic modeling of a PCE-dechlorinating and methanogenic mixed culture.
    Heavner GL; Rowe AR; Mansfeldt CB; Pan JK; Gossett JM; Richardson RE
    Environ Sci Technol; 2013 Apr; 47(8):3724-33. PubMed ID: 23363057
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Frequent concomitant presence of Desulfitobacterium spp. and "Dehalococcoides" spp. in chloroethene-dechlorinating microbial communities.
    Rouzeau-Szynalski K; Maillard J; Holliger C
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):361-8. PubMed ID: 21152914
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process.
    Lohner ST; Becker D; Mangold KM; Tiehm A
    Environ Sci Technol; 2011 Aug; 45(15):6491-7. PubMed ID: 21678913
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D-CSIA: carbon, chlorine, and hydrogen isotope fractionation in transformation of TCE to ethene by a Dehalococcoides culture.
    Kuder T; van Breukelen BM; Vanderford M; Philp P
    Environ Sci Technol; 2013 Sep; 47(17):9668-77. PubMed ID: 23895211
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tetrachloroethane (TeCA) removal through sequential graphite-mixed metal oxide electrodes in a bioelectrochemical reactor.
    Zeppilli M; Yaqoubi H; Dell'Armi E; Lai A; Belfaquir M; Lorini L; Papini MP
    Environ Sci Ecotechnol; 2024 Jan; 17():100309. PubMed ID: 37560753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection and identification of Dehalococcoides species responsible for in situ dechlorination of trichloroethene to ethene enhanced by hydrogen-releasing compounds.
    Nishimura M; Ebisawa M; Sakihara S; Kobayashi A; Nakama T; Okochi M; Yohda M
    Biotechnol Appl Biochem; 2008 Sep; 51(Pt 1):1-7. PubMed ID: 17916062
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system.
    Aulenta F; Canosa A; Majone M; Panero S; Reale P; Rossetti S
    Environ Sci Technol; 2008 Aug; 42(16):6185-90. PubMed ID: 18767685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.