These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 26099484)
1. Multivariate meta-analysis using individual participant data. Riley RD; Price MJ; Jackson D; Wardle M; Gueyffier F; Wang J; Staessen JA; White IR Res Synth Methods; 2015 Jun; 6(2):157-74. PubMed ID: 26099484 [TBL] [Abstract][Full Text] [Related]
2. Efficient two-step multivariate random effects meta-analysis of individual participant data for longitudinal clinical trials using mixed effects models. Noma H; Maruo K; Gosho M; Levine SZ; Goldberg Y; Leucht S; Furukawa TA BMC Med Res Methodol; 2019 Feb; 19(1):33. PubMed ID: 30764757 [TBL] [Abstract][Full Text] [Related]
3. Meta-analysis of a continuous outcome combining individual patient data and aggregate data: a method based on simulated individual patient data. Yamaguchi Y; Sakamoto W; Goto M; Staessen JA; Wang J; Gueyffier F; Riley RD Res Synth Methods; 2014 Dec; 5(4):322-51. PubMed ID: 26052956 [TBL] [Abstract][Full Text] [Related]
4. Joint synthesis of multiple correlated outcomes in networks of interventions. Efthimiou O; Mavridis D; Riley RD; Cipriani A; Salanti G Biostatistics; 2015 Jan; 16(1):84-97. PubMed ID: 24992934 [TBL] [Abstract][Full Text] [Related]
5. A tutorial on individual participant data meta-analysis using Bayesian multilevel modeling to estimate alcohol intervention effects across heterogeneous studies. Huh D; Mun EY; Walters ST; Zhou Z; Atkins DC Addict Behav; 2019 Jul; 94():162-170. PubMed ID: 30791977 [TBL] [Abstract][Full Text] [Related]
6. Meta-analysis of continuous outcomes: Using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment-by-baseline modification. Papadimitropoulou K; Stijnen T; Riley RD; Dekkers OM; le Cessie S Res Synth Methods; 2020 Nov; 11(6):780-794. PubMed ID: 32643264 [TBL] [Abstract][Full Text] [Related]
7. One-stage random effects meta-analysis using linear mixed models for aggregate continuous outcome data. Papadimitropoulou K; Stijnen T; Dekkers OM; le Cessie S Res Synth Methods; 2019 Sep; 10(3):360-375. PubMed ID: 30523676 [TBL] [Abstract][Full Text] [Related]
8. Network meta-analysis combining individual patient and aggregate data from a mixture of study designs with an application to pulmonary arterial hypertension. Thom HH; Capkun G; Cerulli A; Nixon RM; Howard LS BMC Med Res Methodol; 2015 Apr; 15():34. PubMed ID: 25887646 [TBL] [Abstract][Full Text] [Related]
9. Mixed treatment comparisons using aggregate and individual participant level data. Saramago P; Sutton AJ; Cooper NJ; Manca A Stat Med; 2012 Dec; 31(28):3516-36. PubMed ID: 22764016 [TBL] [Abstract][Full Text] [Related]
10. Bayesian bivariate meta-analysis of correlated effects: Impact of the prior distributions on the between-study correlation, borrowing of strength, and joint inferences. Burke DL; Bujkiewicz S; Riley RD Stat Methods Med Res; 2018 Feb; 27(2):428-450. PubMed ID: 26988929 [TBL] [Abstract][Full Text] [Related]
11. An approach for modelling multiple correlated outcomes in a network of interventions using odds ratios. Efthimiou O; Mavridis D; Cipriani A; Leucht S; Bagos P; Salanti G Stat Med; 2014 Jun; 33(13):2275-87. PubMed ID: 24918246 [TBL] [Abstract][Full Text] [Related]
12. An improved method for bivariate meta-analysis when within-study correlations are unknown. Hong C; D Riley R; Chen Y Res Synth Methods; 2018 Mar; 9(1):73-88. PubMed ID: 29055096 [TBL] [Abstract][Full Text] [Related]
13. Random-effects meta-analysis of combined outcomes based on reconstructions of individual patient data. Song Y; Sun F; Redline S; Wang R Res Synth Methods; 2020 Sep; 11(5):594-616. PubMed ID: 32270909 [TBL] [Abstract][Full Text] [Related]
14. Bayesian multivariate meta-analysis of multiple factors. Lin L; Chu H Res Synth Methods; 2018 Jun; 9(2):261-272. PubMed ID: 29427336 [TBL] [Abstract][Full Text] [Related]
15. Individual participant data meta-analysis of intervention studies with time-to-event outcomes: A review of the methodology and an applied example. de Jong VMT; Moons KGM; Riley RD; Tudur Smith C; Marson AG; Eijkemans MJC; Debray TPA Res Synth Methods; 2020 Mar; 11(2):148-168. PubMed ID: 31759339 [TBL] [Abstract][Full Text] [Related]
16. Statistical analysis of individual participant data meta-analyses: a comparison of methods and recommendations for practice. Stewart GB; Altman DG; Askie LM; Duley L; Simmonds MC; Stewart LA PLoS One; 2012; 7(10):e46042. PubMed ID: 23056232 [TBL] [Abstract][Full Text] [Related]
17. A comparison of Bayesian and frequentist methods in random-effects network meta-analysis of binary data. Seide SE; Jensen K; Kieser M Res Synth Methods; 2020 May; 11(3):363-378. PubMed ID: 31955519 [TBL] [Abstract][Full Text] [Related]
18. A tutorial on Bayesian bivariate meta-analysis of mixed binary-continuous outcomes with missing treatment effects. Gajic-Veljanoski O; Cheung AM; Bayoumi AM; Tomlinson G Stat Med; 2016 May; 35(12):2092-108. PubMed ID: 26553369 [TBL] [Abstract][Full Text] [Related]
19. Statistical approaches to identify subgroups in meta-analysis of individual participant data: a simulation study. Belias M; Rovers MM; Reitsma JB; Debray TPA; IntHout J BMC Med Res Methodol; 2019 Sep; 19(1):183. PubMed ID: 31477023 [TBL] [Abstract][Full Text] [Related]
20. A multivariate meta-analysis approach for reducing the impact of outcome reporting bias in systematic reviews. Kirkham JJ; Riley RD; Williamson PR Stat Med; 2012 Sep; 31(20):2179-95. PubMed ID: 22532016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]