These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 26099552)
1. An integrated approach to reveal miRNAs' impacts on the functional consequence of copy number alterations in cancer. Li K; Liu Y; Zhou Y; Zhang R; Zhao N; Yan Z; Zhang Q; Zhang S; Qiu F; Xu Y Sci Rep; 2015 Jun; 5():11567. PubMed ID: 26099552 [TBL] [Abstract][Full Text] [Related]
2. The functional consequences and prognostic value of dosage sensitivity in ovarian cancer. Yan Z; Liu Y; Wei Y; Zhao N; Zhang Q; Wu C; Chang Z; Xu Y Mol Biosyst; 2017 Jan; 13(2):380-391. PubMed ID: 28067383 [TBL] [Abstract][Full Text] [Related]
3. Identification of Novel Breast Cancer Subtype-Specific Biomarkers by Integrating Genomics Analysis of DNA Copy Number Aberrations and miRNA-mRNA Dual Expression Profiling. Li D; Xia H; Li ZY; Hua L; Li L Biomed Res Int; 2015; 2015():746970. PubMed ID: 25961039 [TBL] [Abstract][Full Text] [Related]
4. In-Silico Integration Approach to Identify a Key miRNA Regulating a Gene Network in Aggressive Prostate Cancer. Cava C; Bertoli G; Colaprico A; Bontempi G; Mauri G; Castiglioni I Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29562723 [TBL] [Abstract][Full Text] [Related]
5. microRNAs exhibit high frequency genomic alterations in human cancer. Zhang L; Huang J; Yang N; Greshock J; Megraw MS; Giannakakis A; Liang S; Naylor TL; Barchetti A; Ward MR; Yao G; Medina A; O'brien-Jenkins A; Katsaros D; Hatzigeorgiou A; Gimotty PA; Weber BL; Coukos G Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9136-41. PubMed ID: 16754881 [TBL] [Abstract][Full Text] [Related]
6. No Evidence that MicroRNAs Coevolve with Genes Located in Copy Number Regions. Jovelin R Mol Biol Evol; 2015 Jul; 32(7):1890-4. PubMed ID: 25804521 [TBL] [Abstract][Full Text] [Related]
7. A pathway-based classification of breast cancer integrating data on differentially expressed genes, copy number variations and microRNA target genes. Eo HS; Heo JY; Choi Y; Hwang Y; Choi HS Mol Cells; 2012 Oct; 34(4):393-8. PubMed ID: 22983731 [TBL] [Abstract][Full Text] [Related]
8. Identification of driver genes regulating immune cell infiltration in cervical cancer by multiple omics integration. Wen Y; Zhang S; Yang J; Guo D Biomed Pharmacother; 2019 Dec; 120():109546. PubMed ID: 31675687 [TBL] [Abstract][Full Text] [Related]
9. The shaping and functional consequences of the microRNA landscape in breast cancer. Dvinge H; Git A; Gräf S; Salmon-Divon M; Curtis C; Sottoriva A; Zhao Y; Hirst M; Armisen J; Miska EA; Chin SF; Provenzano E; Turashvili G; Green A; Ellis I; Aparicio S; Caldas C Nature; 2013 May; 497(7449):378-82. PubMed ID: 23644459 [TBL] [Abstract][Full Text] [Related]
10. Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma. Maire G; Martin JW; Yoshimoto M; Chilton-MacNeill S; Zielenska M; Squire JA Cancer Genet; 2011 Mar; 204(3):138-46. PubMed ID: 21504713 [TBL] [Abstract][Full Text] [Related]
11. Reconstruction of temporal activity of microRNAs from gene expression data in breast cancer cell line. Jayavelu ND; Bar N BMC Genomics; 2015 Dec; 16():1077. PubMed ID: 26763900 [TBL] [Abstract][Full Text] [Related]
12. The shaping and functional consequences of the dosage effect landscape in multiple myeloma. Samur MK; Shah PK; Wang X; Minvielle S; Magrangeas F; Avet-Loiseau H; Munshi NC; Li C BMC Genomics; 2013 Oct; 14():672. PubMed ID: 24088394 [TBL] [Abstract][Full Text] [Related]
13. Detecting pan-cancer conserved microRNA modules from microRNA expression profiles across multiple cancers. Liu Z; Zhang J; Yuan X; Liu B; Liu Y; Li A; Zhang Y; Sun X; Tuo S Mol Biosyst; 2015 Aug; 11(8):2227-37. PubMed ID: 26052692 [TBL] [Abstract][Full Text] [Related]
14. DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression. Pronina IV; Loginov VI; Burdennyy AM; Fridman MV; Senchenko VN; Kazubskaya TP; Kushlinskii NE; Dmitriev AA; Braga EA Gene; 2017 Mar; 604():1-8. PubMed ID: 27998789 [TBL] [Abstract][Full Text] [Related]
15. MicroRNAs dysregulated in breast cancer preferentially target key oncogenic pathways. Lim WK; Micklem G Mol Biosyst; 2011 Sep; 7(9):2571-6. PubMed ID: 21766137 [TBL] [Abstract][Full Text] [Related]
16. miR-21 as a key regulator of oncogenic processes. Selcuklu SD; Donoghue MT; Spillane C Biochem Soc Trans; 2009 Aug; 37(Pt 4):918-25. PubMed ID: 19614619 [TBL] [Abstract][Full Text] [Related]
17. Integrative Analysis with Monte Carlo Cross-Validation Reveals miRNAs Regulating Pathways Cross-Talk in Aggressive Breast Cancer. Colaprico A; Cava C; Bertoli G; Bontempi G; Castiglioni I Biomed Res Int; 2015; 2015():831314. PubMed ID: 26240829 [TBL] [Abstract][Full Text] [Related]
18. Gene expression analysis identifies global gene dosage sensitivity in cancer. Fehrmann RS; Karjalainen JM; Krajewska M; Westra HJ; Maloney D; Simeonov A; Pers TH; Hirschhorn JN; Jansen RC; Schultes EA; van Haagen HH; de Vries EG; te Meerman GJ; Wijmenga C; van Vugt MA; Franke L Nat Genet; 2015 Feb; 47(2):115-25. PubMed ID: 25581432 [TBL] [Abstract][Full Text] [Related]
19. Understanding the functional impact of copy number alterations in breast cancer using a network modeling approach. Srihari S; Kalimutho M; Lal S; Singla J; Patel D; Simpson PT; Khanna KK; Ragan MA Mol Biosyst; 2016 Mar; 12(3):963-72. PubMed ID: 26805938 [TBL] [Abstract][Full Text] [Related]
20. MicroRNA-modulated autophagic signaling networks in cancer. Fu LL; Wen X; Bao JK; Liu B Int J Biochem Cell Biol; 2012 May; 44(5):733-6. PubMed ID: 22342941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]