BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26099552)

  • 1. An integrated approach to reveal miRNAs' impacts on the functional consequence of copy number alterations in cancer.
    Li K; Liu Y; Zhou Y; Zhang R; Zhao N; Yan Z; Zhang Q; Zhang S; Qiu F; Xu Y
    Sci Rep; 2015 Jun; 5():11567. PubMed ID: 26099552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The functional consequences and prognostic value of dosage sensitivity in ovarian cancer.
    Yan Z; Liu Y; Wei Y; Zhao N; Zhang Q; Wu C; Chang Z; Xu Y
    Mol Biosyst; 2017 Jan; 13(2):380-391. PubMed ID: 28067383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Novel Breast Cancer Subtype-Specific Biomarkers by Integrating Genomics Analysis of DNA Copy Number Aberrations and miRNA-mRNA Dual Expression Profiling.
    Li D; Xia H; Li ZY; Hua L; Li L
    Biomed Res Int; 2015; 2015():746970. PubMed ID: 25961039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-Silico Integration Approach to Identify a Key miRNA Regulating a Gene Network in Aggressive Prostate Cancer.
    Cava C; Bertoli G; Colaprico A; Bontempi G; Mauri G; Castiglioni I
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29562723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. microRNAs exhibit high frequency genomic alterations in human cancer.
    Zhang L; Huang J; Yang N; Greshock J; Megraw MS; Giannakakis A; Liang S; Naylor TL; Barchetti A; Ward MR; Yao G; Medina A; O'brien-Jenkins A; Katsaros D; Hatzigeorgiou A; Gimotty PA; Weber BL; Coukos G
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9136-41. PubMed ID: 16754881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No Evidence that MicroRNAs Coevolve with Genes Located in Copy Number Regions.
    Jovelin R
    Mol Biol Evol; 2015 Jul; 32(7):1890-4. PubMed ID: 25804521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pathway-based classification of breast cancer integrating data on differentially expressed genes, copy number variations and microRNA target genes.
    Eo HS; Heo JY; Choi Y; Hwang Y; Choi HS
    Mol Cells; 2012 Oct; 34(4):393-8. PubMed ID: 22983731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of driver genes regulating immune cell infiltration in cervical cancer by multiple omics integration.
    Wen Y; Zhang S; Yang J; Guo D
    Biomed Pharmacother; 2019 Dec; 120():109546. PubMed ID: 31675687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The shaping and functional consequences of the microRNA landscape in breast cancer.
    Dvinge H; Git A; Gräf S; Salmon-Divon M; Curtis C; Sottoriva A; Zhao Y; Hirst M; Armisen J; Miska EA; Chin SF; Provenzano E; Turashvili G; Green A; Ellis I; Aparicio S; Caldas C
    Nature; 2013 May; 497(7449):378-82. PubMed ID: 23644459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma.
    Maire G; Martin JW; Yoshimoto M; Chilton-MacNeill S; Zielenska M; Squire JA
    Cancer Genet; 2011 Mar; 204(3):138-46. PubMed ID: 21504713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of temporal activity of microRNAs from gene expression data in breast cancer cell line.
    Jayavelu ND; Bar N
    BMC Genomics; 2015 Dec; 16():1077. PubMed ID: 26763900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The shaping and functional consequences of the dosage effect landscape in multiple myeloma.
    Samur MK; Shah PK; Wang X; Minvielle S; Magrangeas F; Avet-Loiseau H; Munshi NC; Li C
    BMC Genomics; 2013 Oct; 14():672. PubMed ID: 24088394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting pan-cancer conserved microRNA modules from microRNA expression profiles across multiple cancers.
    Liu Z; Zhang J; Yuan X; Liu B; Liu Y; Li A; Zhang Y; Sun X; Tuo S
    Mol Biosyst; 2015 Aug; 11(8):2227-37. PubMed ID: 26052692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression.
    Pronina IV; Loginov VI; Burdennyy AM; Fridman MV; Senchenko VN; Kazubskaya TP; Kushlinskii NE; Dmitriev AA; Braga EA
    Gene; 2017 Mar; 604():1-8. PubMed ID: 27998789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNAs dysregulated in breast cancer preferentially target key oncogenic pathways.
    Lim WK; Micklem G
    Mol Biosyst; 2011 Sep; 7(9):2571-6. PubMed ID: 21766137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR-21 as a key regulator of oncogenic processes.
    Selcuklu SD; Donoghue MT; Spillane C
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):918-25. PubMed ID: 19614619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative Analysis with Monte Carlo Cross-Validation Reveals miRNAs Regulating Pathways Cross-Talk in Aggressive Breast Cancer.
    Colaprico A; Cava C; Bertoli G; Bontempi G; Castiglioni I
    Biomed Res Int; 2015; 2015():831314. PubMed ID: 26240829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression analysis identifies global gene dosage sensitivity in cancer.
    Fehrmann RS; Karjalainen JM; Krajewska M; Westra HJ; Maloney D; Simeonov A; Pers TH; Hirschhorn JN; Jansen RC; Schultes EA; van Haagen HH; de Vries EG; te Meerman GJ; Wijmenga C; van Vugt MA; Franke L
    Nat Genet; 2015 Feb; 47(2):115-25. PubMed ID: 25581432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the functional impact of copy number alterations in breast cancer using a network modeling approach.
    Srihari S; Kalimutho M; Lal S; Singla J; Patel D; Simpson PT; Khanna KK; Ragan MA
    Mol Biosyst; 2016 Mar; 12(3):963-72. PubMed ID: 26805938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-modulated autophagic signaling networks in cancer.
    Fu LL; Wen X; Bao JK; Liu B
    Int J Biochem Cell Biol; 2012 May; 44(5):733-6. PubMed ID: 22342941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.