These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26099719)

  • 1. Development of Flow Imaging Analysis for Subvisible Particle Characterization in Glatiramer Acetate.
    Levin I; Zigman S; Komlosh A; Kettenring J
    J Pharm Sci; 2015 Nov; 104(11):3977-3983. PubMed ID: 26099719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Inherent Particles and Mechanism of Thermal Stress Induced Particle Formation in HSV-2 Viral Vaccine Candidate.
    Li L; Kirkitadze M; Bhandal K; Roque C; Yang E; Carpick B; Rahman N
    Curr Pharm Biotechnol; 2017 Nov; 18(8):638-647. PubMed ID: 28914197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closing the Gap: Counting and Sizing of Particles Across Submicron Range by Flow Cytometry in Therapeutic Protein Products.
    Zhang L; Shi S; Antochshuk V
    J Pharm Sci; 2017 Nov; 106(11):3215-3221. PubMed ID: 28625725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Biopharmaceutical Industry Perspective on the Control of Visible Particles in Biotechnology-Derived Injectable Drug Products.
    Mathonet S; Mahler HC; Esswein ST; Mazaheri M; Cash PW; Wuchner K; Kallmeyer G; Das TK; Finkler C; Lennard A
    PDA J Pharm Sci Technol; 2016; 70(4):392-408. PubMed ID: 27091885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of equivalence of a generic glatiramer acetate (Glatopa™).
    Anderson J; Bell C; Bishop J; Capila I; Ganguly T; Glajch J; Iyer M; Kaundinya G; Lansing J; Pradines J; Prescott J; Cohen BA; Kantor D; Sachleben R
    J Neurol Sci; 2015 Dec; 359(1-2):24-34. PubMed ID: 26671082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multicompany Assessment of Submicron Particle Levels by NTA and RMM in a Wide Range of Late-Phase Clinical and Commercial Biotechnology-Derived Protein Products.
    Hubert M; Yang DT; Kwok SC; Rios A; Das TK; Patel A; Wuchner K; Antochshuk V; Junge F; Bou-Assaf GM; Cao S; Saggu M; Montrond L; Afonina N; Kolhe P; Loladze V; Narhi L
    J Pharm Sci; 2020 Jan; 109(1):830-844. PubMed ID: 31647951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glatiramer acetate persists at the injection site and draining lymph nodes via electrostatically-induced aggregation.
    Song JY; Larson NR; Thati S; Torres-Vazquez I; Martinez-Rivera N; Subelzu NJ; Leon MA; Rosa-Molinar E; Schöneich C; Forrest ML; Middaugh CR; Berkland CJ
    J Control Release; 2019 Jan; 293():36-47. PubMed ID: 30414463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculating the mass of subvisible protein particles with improved accuracy using microflow imaging data.
    Kalonia C; Kumru OS; Prajapati I; Mathaes R; Engert J; Zhou S; Middaugh CR; Volkin DB
    J Pharm Sci; 2015 Feb; 104(2):536-47. PubMed ID: 25302696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subvisible (2-100 μm) Particle Analysis During Biotherapeutic Drug Product Development: Part 1, Considerations and Strategy.
    Narhi LO; Corvari V; Ripple DC; Afonina N; Cecchini I; Defelippis MR; Garidel P; Herre A; Koulov AV; Lubiniecki T; Mahler HC; Mangiagalli P; Nesta D; Perez-Ramirez B; Polozova A; Rossi M; Schmidt R; Simler R; Singh S; Spitznagel TM; Weiskopf A; Wuchner K
    J Pharm Sci; 2015 Jun; 104(6):1899-1908. PubMed ID: 25832583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.
    Gikanga B; Eisner DR; Ovadia R; Day ES; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2017; 71(3):172-188. PubMed ID: 27789805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of background membrane imaging versus flow technologies for subvisible particle analysis of biologics.
    Vargas SK; Eskafi A; Carter E; Ciaccio N
    Int J Pharm; 2020 Mar; 578():119072. PubMed ID: 32001293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape Characterization of Subvisible Particles Using Dynamic Imaging Analysis.
    Mathaes R; Manning MC; Winter G; Engert J; Wilson GA
    J Pharm Sci; 2020 Jan; 109(1):375-379. PubMed ID: 31476311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative laser diffraction method for the assessment of protein subvisible particles.
    Totoki S; Yamamoto G; Tsumoto K; Uchiyama S; Fukui K
    J Pharm Sci; 2015 Feb; 104(2):618-26. PubMed ID: 25449441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors Governing the Accuracy of Subvisible Particle Counting Methods.
    Ríos Quiroz A; Finkler C; Huwyler J; Mahler HC; Schmidt R; Koulov AV
    J Pharm Sci; 2016 Jul; 105(7):2042-52. PubMed ID: 27287519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow Microscopy Imaging Is Sensitive to Characteristics of Subvisible Particles in Peginesatide Formulations Associated With Severe Adverse Reactions.
    Daniels AL; Randolph TW
    J Pharm Sci; 2018 May; 107(5):1313-1321. PubMed ID: 29409840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subvisible (2-100 μm) particle analysis during biotherapeutic drug product development: Part 2, experience with the application of subvisible particle analysis.
    Corvari V; Narhi LO; Spitznagel TM; Afonina N; Cao S; Cash P; Cecchini I; DeFelippis MR; Garidel P; Herre A; Koulov AV; Lubiniecki T; Mahler HC; Mangiagalli P; Nesta D; Perez-Ramirez B; Polozova A; Rossi M; Schmidt R; Simler R; Singh S; Weiskopf A; Wuchner K
    Biologicals; 2015 Nov; 43(6):457-73. PubMed ID: 26324466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphologically-Directed Raman Spectroscopy as an Analytical Method for Subvisible Particle Characterization in Therapeutic Protein Product Quality.
    Kim M; Ma Y; Srinivasan C; O'Connor T; Telikepalli SN; Ripple DC; Lute S; Bhirde A
    Sci Rep; 2023 Nov; 13(1):20473. PubMed ID: 37993487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microflow Imaging Analyses Reflect Mechanisms of Aggregate Formation: Comparing Protein Particle Data Sets Using the Kullback-Leibler Divergence.
    Maddux NR; Daniels AL; Randolph TW
    J Pharm Sci; 2017 May; 106(5):1239-1248. PubMed ID: 28159641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collaborative Study for Analysis of Subvisible Particles Using Flow Imaging and Light Obscuration: Experiences in Japanese Biopharmaceutical Consortium.
    Kiyoshi M; Shibata H; Harazono A; Torisu T; Maruno T; Akimaru M; Asano Y; Hirokawa M; Ikemoto K; Itakura Y; Iwura T; Kikitsu A; Kumagai T; Mori N; Murase H; Nishimura H; Oda A; Ogawa T; Ojima T; Okabe S; Saito S; Saitoh S; Suetomo H; Takegami K; Takeuchi M; Yasukawa H; Uchiyama S; Ishii-Watabe A
    J Pharm Sci; 2019 Feb; 108(2):832-841. PubMed ID: 30121316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.