BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 26099921)

  • 1. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism.
    Mohammed A; Guda C
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S16. PubMed ID: 26099921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.
    Xiong W; Brown CT; Morowitz MJ; Banfield JF; Hettich RL
    Microbiome; 2017 Jul; 5(1):72. PubMed ID: 28693612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic 4-hydroxyproline utilization: Discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity.
    Huang YY; Martínez-Del Campo A; Balskus EP
    Gut Microbes; 2018; 9(5):437-451. PubMed ID: 29405826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gut microbiota functions: metabolism of nutrients and other food components.
    Rowland I; Gibson G; Heinken A; Scott K; Swann J; Thiele I; Tuohy K
    Eur J Nutr; 2018 Feb; 57(1):1-24. PubMed ID: 28393285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach for the prediction of species-specific biotransformation of xenobiotic/drug molecules by the human gut microbiota.
    Sharma AK; Jaiswal SK; Chaudhary N; Sharma VK
    Sci Rep; 2017 Aug; 7(1):9751. PubMed ID: 28852076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Tasmanian devil microbiome-implications for conservation and management.
    Cheng Y; Fox S; Pemberton D; Hogg C; Papenfuss AT; Belov K
    Microbiome; 2015 Dec; 3():76. PubMed ID: 26689946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota.
    Zhang X; Ning Z; Mayne J; Moore JI; Li J; Butcher J; Deeke SA; Chen R; Chiang CK; Wen M; Mack D; Stintzi A; Figeys D
    Microbiome; 2016 Jun; 4(1):31. PubMed ID: 27343061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecology-guided prediction of cross-feeding interactions in the human gut microbiome.
    Goyal A; Wang T; Dubinkina V; Maslov S
    Nat Commun; 2021 Feb; 12(1):1335. PubMed ID: 33637740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome.
    Das P; Babaei P; Nielsen J
    BMC Genomics; 2019 Mar; 20(1):208. PubMed ID: 30866812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revised computational metagenomic processing uncovers hidden and biologically meaningful functional variation in the human microbiome.
    Manor O; Borenstein E
    Microbiome; 2017 Feb; 5(1):19. PubMed ID: 28179006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.
    Xiong W; Abraham PE; Li Z; Pan C; Hettich RL
    Proteomics; 2015 Oct; 15(20):3424-38. PubMed ID: 25914197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metage2Metabo, microbiota-scale metabolic complementarity for the identification of key species.
    Belcour A; Frioux C; Aite M; Bretaudeau A; Hildebrand F; Siegel A
    Elife; 2020 Dec; 9():. PubMed ID: 33372654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids.
    Fu J; Bonder MJ; Cenit MC; Tigchelaar EF; Maatman A; Dekens JA; Brandsma E; Marczynska J; Imhann F; Weersma RK; Franke L; Poon TW; Xavier RJ; Gevers D; Hofker MH; Wijmenga C; Zhernakova A
    Circ Res; 2015 Oct; 117(9):817-24. PubMed ID: 26358192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and mining of enzymes from the human gut microbiome.
    Jia B; Han X; Kim KH; Jeon CO
    Trends Biotechnol; 2022 Feb; 40(2):240-254. PubMed ID: 34304905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenobiotic Metabolism and Gut Microbiomes.
    Das A; Srinivasan M; Ghosh TS; Mande SS
    PLoS One; 2016; 11(10):e0163099. PubMed ID: 27695034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.
    Uddin R; Sufian M
    PLoS One; 2016; 11(1):e0146796. PubMed ID: 26799565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the serum and liver proteomes in gut-microbiota-lacking mice.
    Tung YT; Chen YJ; Chuang HL; Huang WC; Lo CT; Liao CC; Huang CC
    Int J Med Sci; 2017; 14(3):257-267. PubMed ID: 28367086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metaproteomics Study of the Gut Microbiome.
    Lai LA; Tong Z; Chen R; Pan S
    Methods Mol Biol; 2019; 1871():123-132. PubMed ID: 30276736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interrogating gut bacterial genomes for discovery of novel carbohydrate degrading enzymes.
    Luis AS; Martens EC
    Curr Opin Chem Biol; 2018 Dec; 47():126-133. PubMed ID: 30326425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global Profiling of Carbohydrate Active Enzymes in Human Gut Microbiome.
    Bhattacharya T; Ghosh TS; Mande SS
    PLoS One; 2015; 10(11):e0142038. PubMed ID: 26544883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.