BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26100262)

  • 1. CKA2 functions in H2O2-induced apoptosis and high-temperature stress tolerance by regulating NO accumulation in yeast.
    Liu WC; Yuan HM; Li YH; Lu YT
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26100262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WD40-REPEAT 5a functions in drought stress tolerance by regulating nitric oxide accumulation in Arabidopsis.
    Liu WC; Li YH; Yuan HM; Zhang BL; Zhai S; Lu YT
    Plant Cell Environ; 2017 Apr; 40(4):543-552. PubMed ID: 26825291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CK2-dependent phosphorylation positively regulates stress-induced activation of Msn2 in Saccharomyces cerevisiae.
    Cho BR; Hahn JS
    Biochim Biophys Acta Gene Regul Mech; 2017 Jun; 1860(6):695-704. PubMed ID: 28330760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells.
    Nishimura A; Kawahara N; Takagi H
    Biochem Biophys Res Commun; 2013 Jan; 430(1):137-43. PubMed ID: 23159617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NO-mediated apoptosis in yeast.
    Almeida B; Buttner S; Ohlmeier S; Silva A; Mesquita A; Sampaio-Marques B; Osório NS; Kollau A; Mayer B; Leão C; Laranjinha J; Rodrigues F; Madeo F; Ludovico P
    J Cell Sci; 2007 Sep; 120(Pt 18):3279-88. PubMed ID: 17726063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of Catalase and Trehalose in the Protection from Hydrogen Peroxide Toxicity in Saccharomyces cerevisiae.
    Nishimoto T; Watanabe T; Furuta M; Kataoka M; Kishida M
    Biocontrol Sci; 2016; 21(3):179-82. PubMed ID: 27667523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeast Saccharomyces cerevisiae.
    Amigoni L; Frigerio G; Martegani E; Colombo S
    FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26895787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast.
    Yoshikawa Y; Nasuno R; Kawahara N; Nishimura A; Watanabe D; Takagi H
    Nitric Oxide; 2016 Jul; 57():85-91. PubMed ID: 27178802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance through inhibition: ectopic expression of serine protease inhibitor offers stress tolerance via delayed senescence in yeast cell.
    Joshi RS; Tanpure RS; Singh RK; Gupta VS; Giri AP
    Biochem Biophys Res Commun; 2014 Sep; 452(3):361-8. PubMed ID: 25159848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SORTING NEXIN 1 Functions in Plant Salt Stress Tolerance Through Changes of NO Accumulation by Regulating NO Synthase-Like Activity.
    Li TT; Liu WC; Wang FF; Ma QB; Lu YT; Yuan TT
    Front Plant Sci; 2018; 9():1634. PubMed ID: 30542353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endocytosis inhibition during H2O2-induced apoptosis in yeast.
    Pereira C; Bessa C; Saraiva L
    FEMS Yeast Res; 2012 Nov; 12(7):755-60. PubMed ID: 22741558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p53 death signal is mainly mediated by Nuc1(EndoG) in the yeast Saccharomyces cerevisiae.
    Palermo V; Mangiapelo E; Piloto C; Pieri L; Muscolini M; Tuosto L; Mazzoni C
    FEMS Yeast Res; 2013 Nov; 13(7):682-8. PubMed ID: 23875998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of glutathione transferases, Gtt1and Gtt2, with oxidative stress response generated by H2O2 during growth of Saccharomyces cerevisiae.
    Mariani D; Mathias CJ; da Silva CG; Herdeiro Rda S; Pereira R; Panek AD; Eleutherio EC; Pereira MD
    Redox Rep; 2008; 13(6):246-54. PubMed ID: 19017464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role.
    Nishimura A; Kotani T; Sasano Y; Takagi H
    FEMS Yeast Res; 2010 Sep; 10(6):687-98. PubMed ID: 20550582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica.
    Zhang F; Wang Y; Yang Y; Wu H; Wang D; Liu J
    Plant Cell Environ; 2007 Jul; 30(7):775-85. PubMed ID: 17547650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide-mediated antioxidative mechanism in yeast through the activation of the transcription factor Mac1.
    Nasuno R; Aitoku M; Manago Y; Nishimura A; Sasano Y; Takagi H
    PLoS One; 2014; 9(11):e113788. PubMed ID: 25423296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.
    Kim IS; Kim YS; Yoon HS
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3519-33. PubMed ID: 23053072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast flavohemoglobin protects against nitrosative stress and controls ferric reductase activity.
    Lewinska A; Bartosz G
    Redox Rep; 2006; 11(5):231-9. PubMed ID: 17132272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalase modifies yeast Saccharomyces cerevisiae response towards S-nitrosoglutathione-induced stress.
    Lushchak OV; Lushchak VI
    Redox Rep; 2008; 13(6):283-91. PubMed ID: 19017469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a YHB1-GFP reporter to detect nitrosative stress in yeast.
    Lewinska A; Grzelak A; Bartosz G
    Redox Rep; 2008; 13(4):161-71. PubMed ID: 18647486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.