BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26100262)

  • 21. Identification of aluminium transport-related genes via genome-wide phenotypic screening of Saccharomyces cerevisiae.
    Tun NM; O'Doherty PJ; Chen ZH; Wu XY; Bailey TD; Kersaitis C; Wu MJ
    Metallomics; 2014 Aug; 6(8):1558-64. PubMed ID: 24926745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PGK1, the gene encoding the glycolitic enzyme phosphoglycerate kinase, acts as a multicopy suppressor of apoptotic phenotypes in S. cerevisiae.
    Mazzoni C; Torella M; Petrera A; Palermo V; Falcone C
    Yeast; 2009 Jan; 26(1):31-7. PubMed ID: 19180641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling.
    Hao GP; Xing Y; Zhang JH
    J Integr Plant Biol; 2008 Apr; 50(4):435-42. PubMed ID: 18713377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new simple method for isolating multistress-tolerant semidominant mutants of Saccharomyces cerevisiae by one-step selection under lethal hydrogen peroxide stress condition.
    Nakagawa Y; Seita J; Komiyama S; Yamamura H; Hayakawa M; Iimura Y
    Biosci Biotechnol Biochem; 2013; 77(2):224-8. PubMed ID: 23391901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants.
    Kasemets K; Suppi S; Künnis-Beres K; Kahru A
    Chem Res Toxicol; 2013 Mar; 26(3):356-67. PubMed ID: 23339633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protective effect of rhein against oxidative stress-related endothelial cell injury.
    Zhong XF; Huang GD; Luo T; Deng ZY; Hu JN
    Mol Med Rep; 2012 May; 5(5):1261-6. PubMed ID: 22344690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitric oxide signaling in yeast.
    Astuti RI; Nasuno R; Takagi H
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9483-9497. PubMed ID: 27722918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protection against cisplatin in calorie-restricted Saccharomyces cerevisiae is mediated by the nutrient-sensor proteins Ras2, Tor1, or Sch9 through its target glutathione.
    Mariani D; Castro FA; Almeida LG; Fonseca FL; Pereira MD
    FEMS Yeast Res; 2014 Dec; 14(8):1147-59. PubMed ID: 25238629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.
    Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A
    Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sip18 hydrophilin prevents yeast cell death during desiccation stress.
    Rodríguez-Porrata B; Carmona-Gutierrez D; Reisenbichler A; Bauer M; Lopez G; Escoté X; Mas A; Madeo F; Cordero-Otero R
    J Appl Microbiol; 2012 Mar; 112(3):512-25. PubMed ID: 22181064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation to hydrogen peroxide in Saccharomyces cerevisiae: the role of NADPH-generating systems and the SKN7 transcription factor.
    Ng CH; Tan SX; Perrone GG; Thorpe GW; Higgins VJ; Dawes IW
    Free Radic Biol Med; 2008 Mar; 44(6):1131-45. PubMed ID: 18206664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular anti-oxidant defense in maize plants.
    Sang J; Jiang M; Lin F; Xu S; Zhang A; Tan M
    J Integr Plant Biol; 2008 Feb; 50(2):231-43. PubMed ID: 18713446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Down-regulation of fatty acid synthase increases the resistance of Saccharomyces cerevisiae cells to H2O2.
    Matias AC; Pedroso N; Teodoro N; Marinho HS; Antunes F; Nogueira JM; Herrero E; Cyrne L
    Free Radic Biol Med; 2007 Nov; 43(10):1458-65. PubMed ID: 17936191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FSH3 mediated cell death is dependent on NUC1 in Saccharomyces cerevisiae.
    Gowsalya R; Ravi C; Kannan M; Nachiappan V
    FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30776074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitric Oxide Signalling in Yeast.
    Astuti RI; Nasuno R; Takagi H
    Adv Microb Physiol; 2018; 72():29-63. PubMed ID: 29778216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalase activity is stimulated by H(2)O(2) in rich culture medium and is required for H(2)O(2) resistance and adaptation in yeast.
    Martins D; English AM
    Redox Biol; 2014; 2():308-13. PubMed ID: 24563848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae.
    Moraitis C; Curran BP
    Yeast; 2004 Mar; 21(4):313-23. PubMed ID: 15042591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Saccharomyces cerevisiae Ca2+ channel Cch1pMid1p is essential for tolerance to cold stress and iron toxicity.
    Peiter E; Fischer M; Sidaway K; Roberts SK; Sanders D
    FEBS Lett; 2005 Oct; 579(25):5697-703. PubMed ID: 16223494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protection from nitrosative stress by yeast flavohemoglobin.
    Liu L; Zeng M; Hausladen A; Heitman J; Stamler JS
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4672-6. PubMed ID: 10758168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ELO2 Participates in the Regulation of Osmotic Stress Response by Modulating Nitric Oxide Accumulation in Arabidopsis.
    Zheng SQ; Fu ZW; Lu YT
    Front Plant Sci; 2022; 13():924064. PubMed ID: 35909771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.