These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
585 related articles for article (PubMed ID: 26100325)
21. Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment. Tian J; Miller V; Chiu PC; Maresca JA; Guo M; Imhoff PT Sci Total Environ; 2016 May; 553():596-606. PubMed ID: 26938322 [TBL] [Abstract][Full Text] [Related]
22. Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions. Ahmad M; Usman ARA; Rafique MI; Al-Wabel MI Environ Sci Pollut Res Int; 2019 May; 26(15):15136-15152. PubMed ID: 30924040 [TBL] [Abstract][Full Text] [Related]
23. Low-cost magnetic herbal biochar: characterization and application for antibiotic removal. Kong X; Liu Y; Pi J; Li W; Liao Q; Shang J Environ Sci Pollut Res Int; 2017 Mar; 24(7):6679-6687. PubMed ID: 28083746 [TBL] [Abstract][Full Text] [Related]
24. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Li B; Yang L; Wang CQ; Zhang QP; Liu QC; Li YD; Xiao R Chemosphere; 2017 May; 175():332-340. PubMed ID: 28235742 [TBL] [Abstract][Full Text] [Related]
25. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. Mayakaduwa SS; Herath I; Ok YS; Mohan D; Vithanage M Environ Sci Pollut Res Int; 2017 Oct; 24(29):22755-22763. PubMed ID: 27553000 [TBL] [Abstract][Full Text] [Related]
26. [MgO-Biochar for the Adsorption of Phosphate in Water]. Wang BB; Lin JD; Wan SL; He F Huan Jing Ke Xue; 2017 Jul; 38(7):2859-2867. PubMed ID: 29964626 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: Application of a novel combined electrochemical modification method. Jung KW; Ahn KH Bioresour Technol; 2016 Jan; 200():1029-32. PubMed ID: 26476871 [TBL] [Abstract][Full Text] [Related]
28. Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite. Xiao R; Wang JJ; Li R; Park J; Meng Y; Zhou B; Pensky S; Zhang Z Chemosphere; 2018 Oct; 208():408-416. PubMed ID: 29885507 [TBL] [Abstract][Full Text] [Related]
29. Polyethyleneimine-modified biochar for enhanced phosphate adsorption. Li T; Tong Z; Gao B; Li YC; Smyth A; Bayabil HK Environ Sci Pollut Res Int; 2020 Mar; 27(7):7420-7429. PubMed ID: 31884531 [TBL] [Abstract][Full Text] [Related]
30. Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles. Wang C; Wang H Chemosphere; 2018 Feb; 192():1-4. PubMed ID: 29091791 [TBL] [Abstract][Full Text] [Related]
31. Potassium phosphate/magnesium oxide modified biochars: Interfacial chemical behaviours and Pb binding performance. Miao Q; Li G Sci Total Environ; 2021 Mar; 759():143452. PubMed ID: 33250245 [TBL] [Abstract][Full Text] [Related]
32. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Son EB; Poo KM; Chang JS; Chae KJ Sci Total Environ; 2018 Feb; 615():161-168. PubMed ID: 28964991 [TBL] [Abstract][Full Text] [Related]
33. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Tang J; Lv H; Gong Y; Huang Y Bioresour Technol; 2015 Nov; 196():355-63. PubMed ID: 26255599 [TBL] [Abstract][Full Text] [Related]
34. Comparative efficiency of peanut shell and peanut shell biochar for removal of arsenic from water. Sattar MS; Shakoor MB; Ali S; Rizwan M; Niazi NK; Jilani A Environ Sci Pollut Res Int; 2019 Jun; 26(18):18624-18635. PubMed ID: 31055751 [TBL] [Abstract][Full Text] [Related]
35. Biosorption of Co (II) from aqueous solution using algal biochar: Kinetics and isotherm studies. Bordoloi N; Goswami R; Kumar M; Kataki R Bioresour Technol; 2017 Nov; 244(Pt 2):1465-1469. PubMed ID: 28576482 [TBL] [Abstract][Full Text] [Related]
36. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Tran HN; You SJ; Chao HP Waste Manag Res; 2016 Feb; 34(2):129-38. PubMed ID: 26608900 [TBL] [Abstract][Full Text] [Related]
37. As(V) removal using biochar produced from an agricultural waste and prediction of removal efficiency using multiple regression analysis. Lata S; Prabhakar R; Adak A; Samadder SR Environ Sci Pollut Res Int; 2019 Nov; 26(31):32175-32188. PubMed ID: 31494845 [TBL] [Abstract][Full Text] [Related]
38. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Wu W; Li J; Niazi NK; Müller K; Chu Y; Zhang L; Yuan G; Lu K; Song Z; Wang H Environ Sci Pollut Res Int; 2016 Nov; 23(22):22890-22896. PubMed ID: 27572693 [TBL] [Abstract][Full Text] [Related]
39. Efficient removal of priority, hazardous priority and emerging pollutants with Prunus armeniaca functionalized biochar from aqueous wastes: Experimental optimization and modeling. Turk Sekulić M; Pap S; Stojanović Z; Bošković N; Radonić J; Šolević Knudsen T Sci Total Environ; 2018 Feb; 613-614():736-750. PubMed ID: 28938216 [TBL] [Abstract][Full Text] [Related]
40. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Han Z; Sani B; Mrozik W; Obst M; Beckingham B; Karapanagioti HK; Werner D Water Res; 2015 Mar; 70():394-403. PubMed ID: 25555224 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]