These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
726 related articles for article (PubMed ID: 26100583)
1. Iodide-Responsive Cu-Au Nanoparticle-Based Colorimetric Platform for Ultrasensitive Detection of Target Cancer Cells. Ye X; Shi H; He X; Wang K; He D; Yan L; Xu F; Lei Y; Tang J; Yu Y Anal Chem; 2015 Jul; 87(14):7141-7. PubMed ID: 26100583 [TBL] [Abstract][Full Text] [Related]
2. Core-shell Cu@Au nanoparticles-based colorimetric aptasensor for the determination of lysozyme. Lou T; Qiang H; Chen Z Talanta; 2017 Jan; 163():132-139. PubMed ID: 27886762 [TBL] [Abstract][Full Text] [Related]
3. A new colorimetric assay for amylase based on starch-supported Cu/Au nanocluster peroxidase-like activity. Dehghani Z; Mohammadnejad J; Hosseini M Anal Bioanal Chem; 2019 Jun; 411(16):3621-3629. PubMed ID: 31098745 [TBL] [Abstract][Full Text] [Related]
4. A colorimetric assay for measuring iodide using Au@Ag core-shell nanoparticles coupled with Cu(2+). Zeng J; Cao Y; Lu CH; Wang XD; Wang Q; Wen CY; Qu JB; Yuan C; Yan ZF; Chen X Anal Chim Acta; 2015 Sep; 891():269-76. PubMed ID: 26388386 [TBL] [Abstract][Full Text] [Related]
5. Colorimetric iodide recognition and sensing by citrate-stabilized core/shell Cu@Au nanoparticles. Zhang J; Xu X; Yang C; Yang F; Yang X Anal Chem; 2011 May; 83(10):3911-7. PubMed ID: 21449559 [TBL] [Abstract][Full Text] [Related]
6. Highly Sensitive Colorimetric Cancer Cell Detection Based on Dual Signal Amplification. Yu T; Dai PP; Xu JJ; Chen HY ACS Appl Mater Interfaces; 2016 Feb; 8(7):4434-41. PubMed ID: 26824724 [TBL] [Abstract][Full Text] [Related]
7. Gold nanozyme as an excellent co-catalyst for enhancing the performance of a colorimetric and photothermal bioassay. An P; Xue X; Rao H; Wang J; Gao M; Wang H; Luo M; Liu X; Xue Z; Lu X Anal Chim Acta; 2020 Aug; 1125():114-127. PubMed ID: 32674757 [TBL] [Abstract][Full Text] [Related]
8. Aptamer-based colorimetric biosensing of abrin using catalytic gold nanoparticles. Hu J; Ni P; Dai H; Sun Y; Wang Y; Jiang S; Li Z Analyst; 2015 May; 140(10):3581-6. PubMed ID: 25854313 [TBL] [Abstract][Full Text] [Related]
9. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles. Lou T; Chen L; Chen Z; Wang Y; Chen L; Li J ACS Appl Mater Interfaces; 2011 Nov; 3(11):4215-20. PubMed ID: 21970438 [TBL] [Abstract][Full Text] [Related]
10. Colorimetric Detection of Small Molecules in Complex Matrixes via Target-Mediated Growth of Aptamer-Functionalized Gold Nanoparticles. Soh JH; Lin Y; Rana S; Ying JY; Stevens MM Anal Chem; 2015 Aug; 87(15):7644-52. PubMed ID: 26197040 [TBL] [Abstract][Full Text] [Related]
11. Enhanced glucose detection using dendrimer encapsulated gold nanoparticles benefiting from their zwitterionic surface. Wang L; Zhu L; Yu Q; Chen S; Cui Y; Sun H; Gao D; Lan X; Yang Q; Xiao H J Biomater Sci Polym Ed; 2018 Dec; 29(18):2267-2280. PubMed ID: 30382000 [TBL] [Abstract][Full Text] [Related]
12. Dual-recognition colorimetric platform based on porous Au@Pt nanozymes for highly sensitive washing-free detection of Staphylococcus aureus. Gao B; Ding Y; Cai Z; Wu S; Wang J; Ling N; Ye Q; Chen M; Zhang Y; Wei X; Ye Y; Wu Q Mikrochim Acta; 2024 Jul; 191(7):438. PubMed ID: 38951285 [TBL] [Abstract][Full Text] [Related]
13. Label-free colorimetric sensing of copper(II) ions based on accelerating decomposition of H2O2 using gold nanorods as an indicator. Wang S; Chen Z; Chen L; Liu R; Chen L Analyst; 2013 Apr; 138(7):2080-4. PubMed ID: 23420019 [TBL] [Abstract][Full Text] [Related]
14. Enhanced colorimetric detection of norovirus using in-situ growth of Ag shell on Au NPs. Khoris IM; Takemura K; Lee J; Hara T; Abe F; Suzuki T; Park EY Biosens Bioelectron; 2019 Feb; 126():425-432. PubMed ID: 30471568 [TBL] [Abstract][Full Text] [Related]
15. A Cu@Au nanoparticle-based colorimetric competition assay for the detection of sulfide anion and cysteine. Zhang J; Xu X; Yuan Y; Yang C; Yang X ACS Appl Mater Interfaces; 2011 Aug; 3(8):2928-31. PubMed ID: 21786826 [TBL] [Abstract][Full Text] [Related]
16. A triple-amplification colorimetric assay for antibiotics based on magnetic aptamer-enzyme co-immobilized platinum nanoprobes and exonuclease-assisted target recycling. Miao Y; Gan N; Ren HX; Li T; Cao Y; Hu F; Yan Z; Chen Y Analyst; 2015 Nov; 140(22):7663-71. PubMed ID: 26442572 [TBL] [Abstract][Full Text] [Related]
17. Highly sensitive colorimetric detection of glucose through glucose oxidase and Cu Li X; Gao L; Chen Z Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 213():37-41. PubMed ID: 30677737 [TBL] [Abstract][Full Text] [Related]
18. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Ahmed SR; Kim J; Suzuki T; Lee J; Park EY Biosens Bioelectron; 2016 Nov; 85():503-508. PubMed ID: 27209577 [TBL] [Abstract][Full Text] [Related]
19. Magnetically controlled colorimetric aptasensor for chlorpyrifos based on copper-based metal-organic framework nanoparticles with peroxidase mimetic property. Liu Q; He Z; Wang H; Feng X; Han P Mikrochim Acta; 2020 Aug; 187(9):524. PubMed ID: 32857302 [TBL] [Abstract][Full Text] [Related]
20. Dextrin-mediated synthesis of Ag NPs for colorimetric assays of Cu(2+) ion and Au NPs for catalytic activity. Bankura K; Rana D; Mollick MM; Pattanayak S; Bhowmick B; Saha NR; Roy I; Midya T; Barman G; Chattopadhyay D Int J Biol Macromol; 2015 Sep; 80():309-16. PubMed ID: 26143120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]