BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 26100596)

  • 1. Epigenetic regulation in the carcinogenesis of cholangiocarcinoma.
    Chiang NJ; Shan YS; Hung WC; Chen LT
    Int J Biochem Cell Biol; 2015 Oct; 67():110-4. PubMed ID: 26100596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism of cholangiocarcinoma carcinogenesis.
    Maemura K; Natsugoe S; Takao S
    J Hepatobiliary Pancreat Sci; 2014 Oct; 21(10):754-60. PubMed ID: 24895231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenome dysregulation in cholangiocarcinoma.
    O'Rourke CJ; Munoz-Garrido P; Aguayo EL; Andersen JB
    Biochim Biophys Acta Mol Basis Dis; 2018 Apr; 1864(4 Pt B):1423-1434. PubMed ID: 28645654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pathways of genetic transformation in cholangiocarcinogenesis.
    Serafini FM; Radvinsky D
    Cancer Genet; 2016 Dec; 209(12):554-558. PubMed ID: 27720541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methyl-CpG binding protein MBD2 is implicated in methylation-mediated suppression of miR-373 in hilar cholangiocarcinoma.
    Chen Y; Gao W; Luo J; Tian R; Sun H; Zou S
    Oncol Rep; 2011 Feb; 25(2):443-51. PubMed ID: 21165562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing.
    Isomoto H; Mott JL; Kobayashi S; Werneburg NW; Bronk SF; Haan S; Gores GJ
    Gastroenterology; 2007 Jan; 132(1):384-96. PubMed ID: 17241887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b.
    Yang R; Chen Y; Tang C; Li H; Wang B; Yan Q; Hu J; Zou S
    BMC Cancer; 2014 Dec; 14():917. PubMed ID: 25479763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of epigenetic alterations in cholangiocarcinoma.
    Tischoff I; Wittekind C; Tannapfel A
    J Hepatobiliary Pancreat Surg; 2006; 13(4):274-9. PubMed ID: 16858537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The roles of epigenetic regulation in cholangiocarcinogenesis.
    Zhong B; Liao Q; Wang X; Wang X; Zhang J
    Biomed Pharmacother; 2023 Oct; 166():115290. PubMed ID: 37557012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ars2 is overexpressed in human cholangiocarcinomas and its depletion increases PTEN and PDCD4 by decreasing microRNA-21.
    He Q; Cai L; Shuai L; Li D; Wang C; Liu Y; Li X; Li Z; Wang S
    Mol Carcinog; 2013 Apr; 52(4):286-96. PubMed ID: 22213145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: A novel model of oxidative stress-related cholangiocarcinoma genesis.
    Thanan R; Techasen A; Hou B; Jamnongkan W; Armartmuntree N; Yongvanit P; Murata M
    Biochem Biophys Res Commun; 2015 Aug; 464(1):182-8. PubMed ID: 26100205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and epigenetic changes associated with cholangiocarcinoma: from DNA methylation to microRNAs.
    Stutes M; Tran S; DeMorrow S
    World J Gastroenterol; 2007 Dec; 13(48):6465-9. PubMed ID: 18161915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dicer promotes tumorigenesis by translocating to nucleus to promote SFRP1 promoter methylation in cholangiocarcinoma cells.
    Cheng W; Qi Y; Tian L; Wang B; Huang W; Chen Y
    Cell Death Dis; 2017 Feb; 8(2):e2628. PubMed ID: 28230864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic alterations associated with cholangiocarcinoma (review).
    Isomoto H
    Oncol Rep; 2009 Aug; 22(2):227-32. PubMed ID: 19578760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four DNA methylation biomarkers in biliary brush samples accurately identify the presence of cholangiocarcinoma.
    Andresen K; Boberg KM; Vedeld HM; Honne H; Jebsen P; Hektoen M; Wadsworth CA; Clausen OP; Lundin KE; Paulsen V; Foss A; Mathisen Ø; Aabakken L; Schrumpf E; Lothe RA; Lind GE
    Hepatology; 2015 May; 61(5):1651-9. PubMed ID: 25644509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice.
    Farazi PA; Zeisberg M; Glickman J; Zhang Y; Kalluri R; DePinho RA
    Cancer Res; 2006 Jul; 66(13):6622-7. PubMed ID: 16818635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic alterations in cholangiocarcinoma-sustained IL-6/STAT3 signaling in cholangio- carcinoma due to SOCS3 epigenetic silencing.
    Isomoto H
    Digestion; 2009; 79 Suppl 1():2-8. PubMed ID: 19153483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of Epigenomic Factors in Bile Duct Cancer.
    Rogalska-Taranta M; Andersen JB
    Semin Liver Dis; 2022 May; 42(2):202-211. PubMed ID: 35738258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fascin overexpression is involved in carcinogenesis and prognosis of human intrahepatic cholangiocarcinoma: immunohistochemical and molecular analysis.
    Iguchi T; Aishima S; Taketomi A; Nishihara Y; Fujita N; Sanefuji K; Sugimachi K; Yamashita Y; Maehara Y; Tsuneyoshi M
    Hum Pathol; 2009 Feb; 40(2):174-80. PubMed ID: 18835624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenome Remodeling in Cholangiocarcinoma.
    O'Rourke CJ; Lafuente-Barquero J; Andersen JB
    Trends Cancer; 2019 Jun; 5(6):335-350. PubMed ID: 31208696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.