These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 26100808)

  • 1. Through-space transfer of chiral information mediated by a plasmonic nanomaterial.
    Ostovar pour S; Rocks L; Faulds K; Graham D; Parchaňský V; Bouř P; Blanch EW
    Nat Chem; 2015 Jul; 7(7):591-6. PubMed ID: 26100808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances.
    Ben-Moshe A; Maoz BM; Govorov AO; Markovich G
    Chem Soc Rev; 2013 Aug; 42(16):7028-41. PubMed ID: 23788027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral nanocrystals: plasmonic spectra and circular dichroism.
    Fan Z; Govorov AO
    Nano Lett; 2012 Jun; 12(6):3283-9. PubMed ID: 22591323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.
    Abdulrahman NA; Fan Z; Tonooka T; Kelly SM; Gadegaard N; Hendry E; Govorov AO; Kadodwala M
    Nano Lett; 2012 Feb; 12(2):977-83. PubMed ID: 22263754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Interactions between Chiral Plasmonic Nanoparticles and Biomolecules.
    Tadgell B; Liz-Marzán LM
    Chemistry; 2023 Nov; 29(62):e202301691. PubMed ID: 37581332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches.
    Urban MJ; Shen C; Kong XT; Zhu C; Govorov AO; Wang Q; Hentschel M; Liu N
    Annu Rev Phys Chem; 2019 Jun; 70():275-299. PubMed ID: 31112458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.
    Govorov AO; Fan Z; Hernandez P; Slocik JM; Naik RR
    Nano Lett; 2010 Apr; 10(4):1374-82. PubMed ID: 20184381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications.
    Li H; Gao X; Zhang C; Ji Y; Hu Z; Wu X
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36354466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic polymers with strong chiroptical response for sensing molecular chirality.
    Zhai D; Wang P; Wang RY; Tian X; Ji Y; Zhao W; Wang L; Wei H; Wu X; Zhang X
    Nanoscale; 2015 Jun; 7(24):10690-8. PubMed ID: 26030276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons.
    Hentschel M; Wu L; Schäferling M; Bai P; Li EP; Giessen H
    ACS Nano; 2012 Nov; 6(11):10355-65. PubMed ID: 23078518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplification of chiroptical activity of chiral biomolecules by surface plasmons.
    Maoz BM; Chaikin Y; Tesler AB; Bar Elli O; Fan Z; Govorov AO; Markovich G
    Nano Lett; 2013 Mar; 13(3):1203-9. PubMed ID: 23409980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled plasmons induce broadband circular dichroism in patternable films of silver nanoparticles with chiral ligands.
    Vidal X; Kim WJ; Baev A; Tokar V; Jee H; Swihart MT; Prasad PN
    Nanoscale; 2013 Nov; 5(21):10550-5. PubMed ID: 24056891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes.
    Zhang Q; Hernandez T; Smith KW; Hosseini Jebeli SA; Dai AX; Warning L; Baiyasi R; McCarthy LA; Guo H; Chen DH; Dionne JA; Landes CF; Link S
    Science; 2019 Sep; 365(6460):1475-1478. PubMed ID: 31604278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Reversal of Circular Dichroism in the Seed-Mediated Growth of Bichiral Plasmonic Nanoparticles.
    Sun X; Yang J; Sun L; Yang G; Liu C; Tao Y; Cheng Q; Wang C; Xu H; Zhang Q
    ACS Nano; 2022 Nov; 16(11):19174-19186. PubMed ID: 36251931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circular Dichroism Studies on Plasmonic Nanostructures.
    Wang X; Tang Z
    Small; 2017 Jan; 13(1):. PubMed ID: 27273904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trace-Amount Detection of Chiral Molecules Based on Plasmonic Racemic Arrays Fabricated via Direct Laser Writing.
    Tan Y; Lu X; Ding T
    ACS Sens; 2024 Jun; 9(6):3290-3295. PubMed ID: 38832719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.
    Mori T; Sharma A; Hegmann T
    ACS Nano; 2016 Jan; 10(1):1552-64. PubMed ID: 26735843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal Chiral-Plasmon-Induced Upward and Downward Transfer of Circular Dichroism to Achiral Molecules.
    Chen PG; Gao H; Tang B; Jin W; Rogach AL; Lei D
    Nano Lett; 2024 Feb; 24(8):2488-2495. PubMed ID: 38198618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chirality Transfer from Sub-Nanometer Biochemical Molecules to Sub-Micrometer Plasmonic Metastructures: Physiochemical Mechanisms, Biosensing, and Bioimaging Opportunities.
    Cao Z; Gao H; Qiu M; Jin W; Deng S; Wong KY; Lei D
    Adv Mater; 2020 Oct; 32(41):e1907151. PubMed ID: 33252162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.