These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26100967)

  • 1. Linear microrheology with optical tweezers of living cells 'is not an option'!
    Tassieri M
    Soft Matter; 2015 Aug; 11(29):5792-8. PubMed ID: 26100967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microrheology with optical tweezers: measuring the relative viscosity of solutions 'at a glance'.
    Tassieri M; Del Giudice F; Robertson EJ; Jain N; Fries B; Wilson R; Glidle A; Greco F; Netti PA; Maffettone PL; Bicanic T; Cooper JM
    Sci Rep; 2015 Mar; 5():8831. PubMed ID: 25743468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping intracellular mechanics on micropatterned substrates.
    Mandal K; Asnacios A; Goud B; Manneville JB
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7159-E7168. PubMed ID: 27799529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using optical tweezers for the characterization of polyelectrolyte solutions with very low viscoelasticity.
    Pommella A; Preziosi V; Caserta S; Cooper JM; Guido S; Tassieri M
    Langmuir; 2013 Jul; 29(29):9224-30. PubMed ID: 23786307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying single red blood cells under a tunable external force by combining passive microrheology with Raman spectroscopy.
    Raj S; Wojdyla M; Petrov D
    Cell Biochem Biophys; 2013 Apr; 65(3):347-61. PubMed ID: 23080020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microrheological characterization of collagen systems: from molecular solutions to fibrillar gels.
    Shayegan M; Forde NR
    PLoS One; 2013; 8(8):e70590. PubMed ID: 23936454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular viscoelasticity probed by active rheology in optical tweezers.
    Lyubin EV; Khokhlova MD; Skryabina MN; Fedyanin AA
    J Biomed Opt; 2012 Oct; 17(10):101510. PubMed ID: 23223986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical tweezers based active microrheology of sodium polystyrene sulfonate (NaPSS).
    Chiang CC; Wei MT; Chen YQ; Yen PW; Huang YC; Chen JY; Lavastre O; Guillaume H; Guillaume D; Chiou A
    Opt Express; 2011 Apr; 19(9):8847-54. PubMed ID: 21643138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium fluctuations of mechanically stretched single red blood cells detected by optical tweezers.
    Wojdyla M; Raj S; Petrov D
    Eur Biophys J; 2013 Jul; 42(7):539-47. PubMed ID: 23624638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo tissue has non-linear rheological behavior distinct from 3D biomimetic hydrogels, as determined by AMOTIV microscopy.
    Blehm BH; Devine A; Staunton JR; Tanner K
    Biomaterials; 2016 Mar; 83():66-78. PubMed ID: 26773661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotational microrheology of Maxwell fluids using micron-sized wires.
    Colin R; Chevry L; Berret JF; Abou B
    Soft Matter; 2014 Feb; 10(8):1167-73. PubMed ID: 24651977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical trapping microrheology in cultured human cells.
    Bertseva E; Grebenkov D; Schmidhauser P; Gribkova S; Jeney S; Forró L
    Eur Phys J E Soft Matter; 2012 Jul; 35(7):63. PubMed ID: 22821510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic properties of levan-DNA mixtures important in microbial biofilm formation as determined by micro- and macrorheology.
    Stojković B; Sretenovic S; Dogsa I; Poberaj I; Stopar D
    Biophys J; 2015 Feb; 108(3):758-65. PubMed ID: 25650942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An active one-particle microrheometer: incorporating magnetic tweezers to total internal reflection microscopy.
    Gong X; Hua L; Wu C; Ngai T
    Rev Sci Instrum; 2013 Mar; 84(3):033702. PubMed ID: 23556822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidepth, multiparticle tracking for active microrheology using a smart camera.
    Silburn SA; Saunter CD; Girkin JM; Love GD
    Rev Sci Instrum; 2011 Mar; 82(3):033712. PubMed ID: 21456756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells.
    Hendricks AG; Goldman YE
    Methods Mol Biol; 2017; 1486():537-552. PubMed ID: 27844443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microrheology with optical tweezers.
    Yao A; Tassieri M; Padgett M; Cooper J
    Lab Chip; 2009 Sep; 9(17):2568-75. PubMed ID: 19680580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active rheology of phospholipid vesicles.
    Brown AT; Kotar J; Cicuta P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021930. PubMed ID: 21929041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale rheology of glioma cells.
    Alibert C; Pereira D; Lardier N; Etienne-Manneville S; Goud B; Asnacios A; Manneville JB
    Biomaterials; 2021 Aug; 275():120903. PubMed ID: 34102526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.
    Yang Y; Valentine MT
    Methods Cell Biol; 2013; 115():75-96. PubMed ID: 23973067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.