These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68 related articles for article (PubMed ID: 26101035)
1. siRNA Delivery Impedes the Temporal Expression of Cytokine-Activated VCAM1 on Endothelial Cells. Ho TT; You JO; Auguste DT Ann Biomed Eng; 2016 Apr; 44(4):895-902. PubMed ID: 26101035 [TBL] [Abstract][Full Text] [Related]
2. Complementary targeting of liposomes to IL-1α and TNF-α activated endothelial cells via the transient expression of VCAM1 and E-selectin. Gunawan RC; Almeda D; Auguste DT Biomaterials; 2011 Dec; 32(36):9848-53. PubMed ID: 21944721 [TBL] [Abstract][Full Text] [Related]
3. Dual functionalized PVA hydrogels that adhere endothelial cells synergistically. Rafat M; Rotenstein LS; You JO; Auguste DT Biomaterials; 2012 May; 33(15):3880-6. PubMed ID: 22364701 [TBL] [Abstract][Full Text] [Related]
4. Engineered endothelial cell adhesion via VCAM1 and E-selectin antibody-presenting alginate hydrogels. Rafat M; Rotenstein LS; Hu JL; Auguste DT Acta Biomater; 2012 Jul; 8(7):2697-703. PubMed ID: 22504076 [TBL] [Abstract][Full Text] [Related]
5. Minimizing antibody surface density on liposomes while sustaining cytokine-activated EC targeting. Almeda D; Wang B; Auguste DT Biomaterials; 2015 Feb; 41():37-44. PubMed ID: 25522963 [TBL] [Abstract][Full Text] [Related]
6. Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGylated polycaprolactone nanoparticles in siRNA delivery. Lin D; Huang Y; Jiang Q; Zhang W; Yue X; Guo S; Xiao P; Du Q; Xing J; Deng L; Liang Z; Dong A Biomaterials; 2011 Nov; 32(33):8730-42. PubMed ID: 21885115 [TBL] [Abstract][Full Text] [Related]
7. Effective siRNA delivery to inflamed primary vascular endothelial cells by anti-E-selectin and anti-VCAM-1 PEGylated SAINT-based lipoplexes. Leus NG; Talman EG; Ramana P; Kowalski PS; Woudenberg-Vrenken TE; Ruiters MH; Molema G; Kamps JA Int J Pharm; 2014 Jan; 459(1-2):40-50. PubMed ID: 24239833 [TBL] [Abstract][Full Text] [Related]
8. Cytoplasmic delivery of functional siRNA using pH-Responsive nanoscale hydrogels. Liechty WB; Scheuerle RL; Vela Ramirez JE; Peppas NA Int J Pharm; 2019 May; 562():249-257. PubMed ID: 30858114 [TBL] [Abstract][Full Text] [Related]
9. Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery. Sevimli S; Sagnella S; Kavallaris M; Bulmus V; Davis TP Biomacromolecules; 2013 Nov; 14(11):4135-49. PubMed ID: 24125032 [TBL] [Abstract][Full Text] [Related]
10. Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery. Ma X; Zhao Y; Ng KW; Zhao Y Chemistry; 2013 Nov; 19(46):15593-603. PubMed ID: 24123533 [TBL] [Abstract][Full Text] [Related]
11. Positive crosstalk between arginase-II and S6K1 in vascular endothelial inflammation and aging. Yepuri G; Velagapudi S; Xiong Y; Rajapakse AG; Montani JP; Ming XF; Yang Z Aging Cell; 2012 Dec; 11(6):1005-16. PubMed ID: 22928666 [TBL] [Abstract][Full Text] [Related]
12. Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles. You JO; Auguste DT Biomaterials; 2008 Apr; 29(12):1950-7. PubMed ID: 18255142 [TBL] [Abstract][Full Text] [Related]
13. pH-triggered nanoparticle mediated delivery of siRNA to liver cells in vitro and in vivo. Kolli S; Wong SP; Harbottle R; Johnston B; Thanou M; Miller AD Bioconjug Chem; 2013 Mar; 24(3):314-32. PubMed ID: 23305315 [TBL] [Abstract][Full Text] [Related]
14. shRNAs targeting high-mobility group box-1 inhibit E-selectin expression via homeobox A9 in human umbilical vein endothelial cells. Zhang XJ; Luan ZG; Ma XC Mol Med Rep; 2013 Apr; 7(4):1251-6. PubMed ID: 23403989 [TBL] [Abstract][Full Text] [Related]
15. The effect of swelling and cationic character on gene transfection by pH-sensitive nanocarriers. You JO; Auguste DT Biomaterials; 2010 Sep; 31(26):6859-66. PubMed ID: 20493524 [TBL] [Abstract][Full Text] [Related]
16. Redox-responsive mesoporous silica nanoparticles: a physiologically sensitive codelivery vehicle for siRNA and doxorubicin. Ma X; Teh C; Zhang Q; Borah P; Choong C; Korzh V; Zhao Y Antioxid Redox Signal; 2014 Aug; 21(5):707-22. PubMed ID: 23931896 [TBL] [Abstract][Full Text] [Related]
17. Efficient delivery of Bcl-2-targeted siRNA using cationic polymer nanoparticles: downregulating mRNA expression level and sensitizing cancer cells to anticancer drug. Beh CW; Seow WY; Wang Y; Zhang Y; Ong ZY; Ee PL; Yang YY Biomacromolecules; 2009 Jan; 10(1):41-8. PubMed ID: 19072631 [TBL] [Abstract][Full Text] [Related]
18. Anti-VCAM-1 and anti-E-selectin SAINT-O-Somes for selective delivery of siRNA into inflammation-activated primary endothelial cells. Kowalski PS; Lintermans LL; Morselt HW; Leus NG; Ruiters MH; Molema G; Kamps JA Mol Pharm; 2013 Aug; 10(8):3033-44. PubMed ID: 23819446 [TBL] [Abstract][Full Text] [Related]
19. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy. Li TS; Yawata T; Honke K Eur J Pharm Sci; 2014 Feb; 52():48-61. PubMed ID: 24178005 [TBL] [Abstract][Full Text] [Related]
20. Reversal of lung cancer multidrug resistance by pH-responsive micelleplexes mediating co-delivery of siRNA and paclitaxel. Yu H; Xu Z; Chen X; Xu L; Yin Q; Zhang Z; Li Y Macromol Biosci; 2014 Jan; 14(1):100-9. PubMed ID: 23966347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]