Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 26101035)

  • 1. siRNA Delivery Impedes the Temporal Expression of Cytokine-Activated VCAM1 on Endothelial Cells.
    Ho TT; You JO; Auguste DT
    Ann Biomed Eng; 2016 Apr; 44(4):895-902. PubMed ID: 26101035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementary targeting of liposomes to IL-1α and TNF-α activated endothelial cells via the transient expression of VCAM1 and E-selectin.
    Gunawan RC; Almeda D; Auguste DT
    Biomaterials; 2011 Dec; 32(36):9848-53. PubMed ID: 21944721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual functionalized PVA hydrogels that adhere endothelial cells synergistically.
    Rafat M; Rotenstein LS; You JO; Auguste DT
    Biomaterials; 2012 May; 33(15):3880-6. PubMed ID: 22364701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered endothelial cell adhesion via VCAM1 and E-selectin antibody-presenting alginate hydrogels.
    Rafat M; Rotenstein LS; Hu JL; Auguste DT
    Acta Biomater; 2012 Jul; 8(7):2697-703. PubMed ID: 22504076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimizing antibody surface density on liposomes while sustaining cytokine-activated EC targeting.
    Almeda D; Wang B; Auguste DT
    Biomaterials; 2015 Feb; 41():37-44. PubMed ID: 25522963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGylated polycaprolactone nanoparticles in siRNA delivery.
    Lin D; Huang Y; Jiang Q; Zhang W; Yue X; Guo S; Xiao P; Du Q; Xing J; Deng L; Liang Z; Dong A
    Biomaterials; 2011 Nov; 32(33):8730-42. PubMed ID: 21885115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective siRNA delivery to inflamed primary vascular endothelial cells by anti-E-selectin and anti-VCAM-1 PEGylated SAINT-based lipoplexes.
    Leus NG; Talman EG; Ramana P; Kowalski PS; Woudenberg-Vrenken TE; Ruiters MH; Molema G; Kamps JA
    Int J Pharm; 2014 Jan; 459(1-2):40-50. PubMed ID: 24239833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoplasmic delivery of functional siRNA using pH-Responsive nanoscale hydrogels.
    Liechty WB; Scheuerle RL; Vela Ramirez JE; Peppas NA
    Int J Pharm; 2019 May; 562():249-257. PubMed ID: 30858114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery.
    Sevimli S; Sagnella S; Kavallaris M; Bulmus V; Davis TP
    Biomacromolecules; 2013 Nov; 14(11):4135-49. PubMed ID: 24125032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery.
    Ma X; Zhao Y; Ng KW; Zhao Y
    Chemistry; 2013 Nov; 19(46):15593-603. PubMed ID: 24123533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive crosstalk between arginase-II and S6K1 in vascular endothelial inflammation and aging.
    Yepuri G; Velagapudi S; Xiong Y; Rajapakse AG; Montani JP; Ming XF; Yang Z
    Aging Cell; 2012 Dec; 11(6):1005-16. PubMed ID: 22928666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles.
    You JO; Auguste DT
    Biomaterials; 2008 Apr; 29(12):1950-7. PubMed ID: 18255142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-triggered nanoparticle mediated delivery of siRNA to liver cells in vitro and in vivo.
    Kolli S; Wong SP; Harbottle R; Johnston B; Thanou M; Miller AD
    Bioconjug Chem; 2013 Mar; 24(3):314-32. PubMed ID: 23305315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. shRNAs targeting high-mobility group box-1 inhibit E-selectin expression via homeobox A9 in human umbilical vein endothelial cells.
    Zhang XJ; Luan ZG; Ma XC
    Mol Med Rep; 2013 Apr; 7(4):1251-6. PubMed ID: 23403989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of swelling and cationic character on gene transfection by pH-sensitive nanocarriers.
    You JO; Auguste DT
    Biomaterials; 2010 Sep; 31(26):6859-66. PubMed ID: 20493524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-responsive mesoporous silica nanoparticles: a physiologically sensitive codelivery vehicle for siRNA and doxorubicin.
    Ma X; Teh C; Zhang Q; Borah P; Choong C; Korzh V; Zhao Y
    Antioxid Redox Signal; 2014 Aug; 21(5):707-22. PubMed ID: 23931896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient delivery of Bcl-2-targeted siRNA using cationic polymer nanoparticles: downregulating mRNA expression level and sensitizing cancer cells to anticancer drug.
    Beh CW; Seow WY; Wang Y; Zhang Y; Ong ZY; Ee PL; Yang YY
    Biomacromolecules; 2009 Jan; 10(1):41-8. PubMed ID: 19072631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-VCAM-1 and anti-E-selectin SAINT-O-Somes for selective delivery of siRNA into inflammation-activated primary endothelial cells.
    Kowalski PS; Lintermans LL; Morselt HW; Leus NG; Ruiters MH; Molema G; Kamps JA
    Mol Pharm; 2013 Aug; 10(8):3033-44. PubMed ID: 23819446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy.
    Li TS; Yawata T; Honke K
    Eur J Pharm Sci; 2014 Feb; 52():48-61. PubMed ID: 24178005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal of lung cancer multidrug resistance by pH-responsive micelleplexes mediating co-delivery of siRNA and paclitaxel.
    Yu H; Xu Z; Chen X; Xu L; Yin Q; Zhang Z; Li Y
    Macromol Biosci; 2014 Jan; 14(1):100-9. PubMed ID: 23966347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.