BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 26101219)

  • 61. Centriole Biogenesis: Symmetry Breaking and Site Selection.
    Ignacio DP; Coffman VC; Dawes AT
    Trends Cell Biol; 2019 Jan; 29(1):3-5. PubMed ID: 30470626
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication.
    Slevin LK; Nye J; Pinkerton DC; Buster DW; Rogers GC; Slep KC
    Structure; 2012 Nov; 20(11):1905-17. PubMed ID: 23000383
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Plk2 regulated centriole duplication is dependent on its localization to the centrioles and a functional polo-box domain.
    Cizmecioglu O; Warnke S; Arnold M; Duensing S; Hoffmann I
    Cell Cycle; 2008 Nov; 7(22):3548-55. PubMed ID: 19001868
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Autoamplification and Competition Drive Symmetry Breaking: Initiation of Centriole Duplication by the PLK4-STIL Network.
    Leda M; Holland AJ; Goryachev AB
    iScience; 2018 Oct; 8():222-235. PubMed ID: 30340068
    [TBL] [Abstract][Full Text] [Related]  

  • 65. PLK4: a link between centriole biogenesis and cancer.
    Maniswami RR; Prashanth S; Karanth AV; Koushik S; Govindaraj H; Mullangi R; Rajagopal S; Jegatheesan SK
    Expert Opin Ther Targets; 2018 Jan; 22(1):59-73. PubMed ID: 29171762
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication.
    Rogers GC; Rusan NM; Roberts DM; Peifer M; Rogers SL
    J Cell Biol; 2009 Jan; 184(2):225-39. PubMed ID: 19171756
    [TBL] [Abstract][Full Text] [Related]  

  • 67. YLT-11, a novel PLK4 inhibitor, inhibits human breast cancer growth via inducing maladjusted centriole duplication and mitotic defect.
    Lei Q; Xiong L; Xia Y; Feng Z; Gao T; Wei W; Song X; Ye T; Wang N; Peng C; Li Z; Liu Z; Yu L
    Cell Death Dis; 2018 Oct; 9(11):1066. PubMed ID: 30337519
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A theory of centriole duplication based on self-organized spatial pattern formation.
    Takao D; Yamamoto S; Kitagawa D
    J Cell Biol; 2019 Nov; 218(11):3537-3547. PubMed ID: 31451615
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A non-canonical function of Plk4 in centriolar satellite integrity and ciliogenesis through PCM1 phosphorylation.
    Hori A; Barnouin K; Snijders AP; Toda T
    EMBO Rep; 2016 Mar; 17(3):326-37. PubMed ID: 26755742
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A simple Turing reaction-diffusion model explains how PLK4 breaks symmetry during centriole duplication and assembly.
    Wilmott ZM; Goriely A; Raff JW
    PLoS Biol; 2023 Nov; 21(11):e3002391. PubMed ID: 37983248
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis.
    Park SY; Park JE; Kim TS; Kim JH; Kwak MJ; Ku B; Tian L; Murugan RN; Ahn M; Komiya S; Hojo H; Kim NH; Kim BY; Bang JK; Erikson RL; Lee KW; Kim SJ; Oh BH; Yang W; Lee KS
    Nat Struct Mol Biol; 2014 Aug; 21(8):696-703. PubMed ID: 24997597
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The HPV-16 E7 oncoprotein induces centriole multiplication through deregulation of Polo-like kinase 4 expression.
    Korzeniewski N; Treat B; Duensing S
    Mol Cancer; 2011 May; 10():61. PubMed ID: 21609466
    [TBL] [Abstract][Full Text] [Related]  

  • 73. PLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle.
    Chang J; Cizmecioglu O; Hoffmann I; Rhee K
    EMBO J; 2010 Jul; 29(14):2395-406. PubMed ID: 20531387
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Autoinhibition and relief mechanism for Polo-like kinase 4.
    Klebba JE; Buster DW; McLamarrah TA; Rusan NM; Rogers GC
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):E657-66. PubMed ID: 25646492
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Polo kinase Plk4 functions in centriole duplication.
    Habedanck R; Stierhof YD; Wilkinson CJ; Nigg EA
    Nat Cell Biol; 2005 Nov; 7(11):1140-6. PubMed ID: 16244668
    [TBL] [Abstract][Full Text] [Related]  

  • 76. CDK11(p58) is required for centriole duplication and Plk4 recruitment to mitotic centrosomes.
    Franck N; Montembault E; Romé P; Pascal A; Cremet JY; Giet R
    PLoS One; 2011 Jan; 6(1):e14600. PubMed ID: 21297952
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The RAC1 activator Tiam1 regulates centriole duplication through controlling PLK4 levels.
    Porter AP; Reed H; White GRM; Ogg EL; Whalley HJ; Malliri A
    J Cell Sci; 2021 Apr; 134(7):. PubMed ID: 33758078
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Plk4-induced centriole biogenesis in human cells.
    Kleylein-Sohn J; Westendorf J; Le Clech M; Habedanck R; Stierhof YD; Nigg EA
    Dev Cell; 2007 Aug; 13(2):190-202. PubMed ID: 17681131
    [TBL] [Abstract][Full Text] [Related]  

  • 79. CEP120 interacts with CPAP and positively regulates centriole elongation.
    Lin YN; Wu CT; Lin YC; Hsu WB; Tang CJ; Chang CW; Tang TK
    J Cell Biol; 2013 Jul; 202(2):211-9. PubMed ID: 23857771
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A homeostatic clock sets daughter centriole size in flies.
    Aydogan MG; Wainman A; Saurya S; Steinacker TL; Caballe A; Novak ZA; Baumbach J; Muschalik N; Raff JW
    J Cell Biol; 2018 Apr; 217(4):1233-1248. PubMed ID: 29500190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.