BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26101462)

  • 1. Modulation of Acid Sphingomyelinase in Melanoma Reprogrammes the Tumour Immune Microenvironment.
    Assi E; Cervia D; Bizzozero L; Capobianco A; Pambianco S; Morisi F; De Palma C; Moscheni C; Pellegrino P; Clementi E; Perrotta C
    Mediators Inflamm; 2015; 2015():370482. PubMed ID: 26101462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumour-derived IL-10 within tumour microenvironment represses the antitumour immunity of Socs1-silenced and sustained antigen expressing DCs.
    Song S; Wang Y; Wang J; Lian W; Liu S; Zhang Z; Liu F; Wei L
    Eur J Cancer; 2012 Sep; 48(14):2252-9. PubMed ID: 22230748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting ALCAM in the cryo-treated tumour microenvironment successfully induces systemic anti-tumour immunity.
    Kudo-Saito C; Fuwa T; Kawakami Y
    Eur J Cancer; 2016 Jul; 62():54-61. PubMed ID: 27208904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downregulation of Stat3 in melanoma: reprogramming the immune microenvironment as an anticancer therapeutic strategy.
    Emeagi PU; Maenhout S; Dang N; Heirman C; Thielemans K; Breckpot K
    Gene Ther; 2013 Nov; 20(11):1085-92. PubMed ID: 23804077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adoptive cytotoxic T lymphocyte therapy triggers a counter-regulatory immunosuppressive mechanism via recruitment of myeloid-derived suppressor cells.
    Hosoi A; Matsushita H; Shimizu K; Fujii S; Ueha S; Abe J; Kurachi M; Maekawa R; Matsushima K; Kakimi K
    Int J Cancer; 2014 Apr; 134(8):1810-22. PubMed ID: 24150772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel and enhanced anti-melanoma DNA vaccine targeting the tyrosinase protein inhibits myeloid-derived suppressor cells and tumor growth in a syngeneic prophylactic and therapeutic murine model.
    Yan J; Tingey C; Lyde R; Gorham TC; Choo DK; Muthumani A; Myles D; Weiner LP; Kraynyak KA; Reuschel EL; Finkel TH; Kim JJ; Sardesai NY; Ugen KE; Muthumani K; Weiner DB
    Cancer Gene Ther; 2014 Dec; 21(12):507-17. PubMed ID: 25394503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner.
    Werthmöller N; Frey B; Wunderlich R; Fietkau R; Gaipl US
    Cell Death Dis; 2015 May; 6(5):e1761. PubMed ID: 25973681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distinct role of CD4+ and CD8+ T-cells during the anti-tumour effects of targeted superantigens.
    Litton MJ; Dohlsten M; Rosendahl A; Ohlsson L; Søgaard M; Andersson J; Andersson U
    Br J Cancer; 1999 Sep; 81(2):359-66. PubMed ID: 10496366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential role for acid sphingomyelinase-inhibited autophagy in melanoma response to cisplatin.
    Cervia D; Assi E; De Palma C; Giovarelli M; Bizzozero L; Pambianco S; Di Renzo I; Zecchini S; Moscheni C; Vantaggiato C; Procacci P; Clementi E; Perrotta C
    Oncotarget; 2016 May; 7(18):24995-5009. PubMed ID: 27107419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth.
    Schlecker E; Stojanovic A; Eisen C; Quack C; Falk CS; Umansky V; Cerwenka A
    J Immunol; 2012 Dec; 189(12):5602-11. PubMed ID: 23152559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of ionising radiation with hyperthermia increases the immunogenic potential of B16-F10 melanoma cells in vitro and in vivo.
    Werthmöller N; Frey B; Rückert M; Lotter M; Fietkau R; Gaipl US
    Int J Hyperthermia; 2016; 32(1):23-30. PubMed ID: 26754406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A TCM formula comprising Sophorae Flos and Lonicerae Japonicae Flos alters compositions of immune cells and molecules of the STAT3 pathway in melanoma microenvironment.
    Liu YX; Bai JX; Li T; Fu XQ; Guo H; Zhu PL; Chan YC; Chou JY; Yin CL; Li JK; Wang YP; Chen YJ; Yu ZL
    Pharmacol Res; 2019 Apr; 142():115-126. PubMed ID: 30797070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid Sphingomyelinase Downregulation Enhances Mitochondrial Fusion and Promotes Oxidative Metabolism in a Mouse Model of Melanoma.
    Coazzoli M; Napoli A; Roux-Biejat P; Palma C; Moscheni C; Catalani E; Zecchini S; Conte V; Giovarelli M; Caccia S; Procacci P; Cervia D; Clementi E; Perrotta C
    Cells; 2020 Mar; 9(4):. PubMed ID: 32244541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid sphingomyelinase determines melanoma progression and metastatic behaviour via the microphtalmia-associated transcription factor signalling pathway.
    Bizzozero L; Cazzato D; Cervia D; Assi E; Simbari F; Pagni F; De Palma C; Monno A; Verdelli C; Querini PR; Russo V; Clementi E; Perrotta C
    Cell Death Differ; 2014 Apr; 21(4):507-20. PubMed ID: 24317198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells.
    Gao X; Wang X; Yang Q; Zhao X; Wen W; Li G; Lu J; Qin W; Qi Y; Xie F; Jiang J; Wu C; Zhang X; Chen X; Turnquist H; Zhu Y; Lu B
    J Immunol; 2015 Jan; 194(1):438-45. PubMed ID: 25429071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice.
    Jeanbart L; Kourtis IC; van der Vlies AJ; Swartz MA; Hubbell JA
    Cancer Immunol Immunother; 2015 Aug; 64(8):1033-46. PubMed ID: 25982370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blocking Tumor Necrosis Factor α Enhances CD8 T-cell-Dependent Immunity in Experimental Melanoma.
    Bertrand F; Rochotte J; Colacios C; Montfort A; Tilkin-Mariamé AF; Touriol C; Rochaix P; Lajoie-Mazenc I; Andrieu-Abadie N; Levade T; Benoist H; Ségui B
    Cancer Res; 2015 Jul; 75(13):2619-28. PubMed ID: 25977337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclophosphamide promotes chronic inflammation-dependent immunosuppression and prevents antitumor response in melanoma.
    Sevko A; Sade-Feldman M; Kanterman J; Michels T; Falk CS; Umansky L; Ramacher M; Kato M; Schadendorf D; Baniyash M; Umansky V
    J Invest Dermatol; 2013 Jun; 133(6):1610-9. PubMed ID: 23223128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pro-inflammatory chemokine-chemokine receptor interactions within the Ewing sarcoma microenvironment determine CD8(+) T-lymphocyte infiltration and affect tumour progression.
    Berghuis D; Santos SJ; Baelde HJ; Taminiau AH; Egeler RM; Schilham MW; Hogendoorn PC; Lankester AC
    J Pathol; 2011 Feb; 223(3):347-57. PubMed ID: 21171080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the functions of myeloid-derived suppressor cells : a new strategy of hydrogen sulfide anti-cancer effects.
    De Cicco P; Ercolano G; Rubino V; Terrazzano G; Ruggiero G; Cirino G; Ianaro A
    Br J Pharmacol; 2020 Feb; 177(4):884-897. PubMed ID: 31392723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.