BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 26101696)

  • 1. Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect.
    Zhang S; Yang C; Yang Z; Zhang D; Ma X; Mills G; Liu Z
    Am J Cancer Res; 2015; 5(4):1265-80. PubMed ID: 26101696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Warburg Effect: Historical Dogma Versus Current Rationale.
    Vaupel P; Multhoff G
    Adv Exp Med Biol; 2021; 1269():169-177. PubMed ID: 33966213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States.
    Jia D; Park JH; Jung KH; Levine H; Kaipparettu BA
    Cells; 2018 Mar; 7(3):. PubMed ID: 29534029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Molecular Mechanisms behind Advanced Breast Cancer Metabolism: Warburg Effect, OXPHOS, and Calcium.
    Mitaishvili E; Feinsod H; David Z; Shpigel J; Fernandez C; Sauane M; de la Parra C
    Front Biosci (Landmark Ed); 2024 Mar; 29(3):99. PubMed ID: 38538285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Warburg Effect Reinterpreted 100 yr on: A First-Principles Stoichiometric Analysis and Interpretation from the Perspective of ATP Metabolism in Cancer Cells.
    Nath S; Balling R
    Function (Oxf); 2024; 5(3):zqae008. PubMed ID: 38706962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. More Than Meets the Eye Regarding Cancer Metabolism.
    Kubicka A; Matczak K; Łabieniec-Watała M
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Warburg effect: the metabolic requirements of cell proliferation.
    Vander Heiden MG; Cantley LC; Thompson CB
    Science; 2009 May; 324(5930):1029-33. PubMed ID: 19460998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers.
    Chen CL; Lin CY; Kung HJ
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights in ATP Synthesis as Therapeutic Target in Cancer and Angiogenic Ocular Diseases.
    van Noorden CJF; Yetkin-Arik B; Serrano Martinez P; Bakker N; van Breest Smallenburg ME; Schlingemann RO; Klaassen I; Majc B; Habic A; Bogataj U; Galun SK; Vittori M; Erdani Kreft M; Novak M; Breznik B; Hira VVV
    J Histochem Cytochem; 2024 May; 72(5):329-352. PubMed ID: 38733294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preneoplastic cells switch to Warburg metabolism from their inception exposing multiple vulnerabilities for targeted elimination.
    Myllymäki H; Kelly L; Elliot AM; Carter RN; Johansson JA; Chang KY; Cholewa-Waclaw J; Morton NM; Feng Y
    Oncogenesis; 2024 Jan; 13(1):7. PubMed ID: 38272902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Warburg Effect Explained: Integration of Enhanced Glycolysis with Heterogeneous Mitochondria to Promote Cancer Cell Proliferation.
    Alberghina L
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Autophagy by Glycolysis in Cancer.
    Chu Y; Chang Y; Lu W; Sheng X; Wang S; Xu H; Ma J
    Cancer Manag Res; 2020; 12():13259-13271. PubMed ID: 33380833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active DNA Demethylase, TET1, Increases Oxidative Phosphorylation and Sensitizes Ovarian Cancer Stem Cells to Mitochondrial Complex I Inhibitor.
    Chen LY; Shen YA; Chu LH; Su PH; Wang HC; Weng YC; Lin SF; Wen KC; Liew PL; Lai HC
    Antioxidants (Basel); 2024 Jun; 13(6):. PubMed ID: 38929174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Warburg effect on radioresistance: Survival beyond growth.
    Kang H; Kim B; Park J; Youn H; Youn B
    Biochim Biophys Acta Rev Cancer; 2023 Nov; 1878(6):188988. PubMed ID: 37726064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen and Iron Availability Shapes Metabolic Adaptations of Cancer Cells.
    Wang R; Hussain A; Guo QQ; Jin XW; Wang MM
    World J Oncol; 2024 Feb; 15(1):28-37. PubMed ID: 38274726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Warburg Effect 97 Years after Its Discovery.
    Pascale RM; Calvisi DF; Simile MM; Feo CF; Feo F
    Cancers (Basel); 2020 Sep; 12(10):. PubMed ID: 33008042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarities in the Metabolic Reprogramming of Immune System and Endothelium.
    Tang CY; Mauro C
    Front Immunol; 2017; 8():837. PubMed ID: 28785263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer.
    Liao M; Yao D; Wu L; Luo C; Wang Z; Zhang J; Liu B
    Acta Pharm Sin B; 2024 Mar; 14(3):953-1008. PubMed ID: 38487001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the Metabolic Paradigms in Cancer and Diabetes.
    Bosso M; Haddad D; Al Madhoun A; Al-Mulla F
    Biomedicines; 2024 Jan; 12(1):. PubMed ID: 38255314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical requirement of SOS1 RAS-GEF function for mitochondrial dynamics, metabolism, and redox homeostasis.
    García-Navas R; Liceras-Boillos P; Gómez C; Baltanás FC; Calzada N; Nuevo-Tapioles C; Cuezva JM; Santos E
    Oncogene; 2021 Jul; 40(27):4538-4551. PubMed ID: 34120142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.