These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 26101839)

  • 1. Using Molecular Dynamics Simulations as an Aid in the Prediction of Domain Swapping of Computationally Designed Protein Variants.
    Mou Y; Huang PS; Thomas LM; Mayo SL
    J Mol Biol; 2015 Aug; 427(16):2697-706. PubMed ID: 26101839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing monomeric IFNγ: The significance of domain-swapped dimer structure in IFNγ immune responses.
    Goto Y; Miyafusa T; Honda S
    J Biol Chem; 2024 Jul; 300(7):107464. PubMed ID: 38879015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human DND1-RRM2 forms a non-canonical domain swapped dimer.
    Kumari P; Bhavesh NS
    Protein Sci; 2021 Jun; 30(6):1184-1195. PubMed ID: 33860980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A five-residue motif for the design of domain swapping in proteins.
    Nandwani N; Surana P; Negi H; Mascarenhas NM; Udgaonkar JB; Das R; Gosavi S
    Nat Commun; 2019 Jan; 10(1):452. PubMed ID: 30692525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation.
    Nasedkin A; Marcellini M; Religa TL; Freund SM; Menzel A; Fersht AR; Jemth P; van der Spoel D; Davidsson J
    PLoS One; 2015; 10(5):e0125662. PubMed ID: 25946337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues.
    Rousseau F; Schymkowitz JW; Wilkinson HR; Itzhaki LS
    Proc Natl Acad Sci U S A; 2001 May; 98(10):5596-601. PubMed ID: 11344301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Determinants of Misfolding in Multidomain Proteins.
    Tian P; Best RB
    PLoS Comput Biol; 2016 May; 12(5):e1004933. PubMed ID: 27163669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity versus stability in computational protein design.
    Bolon DN; Grant RA; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12724-9. PubMed ID: 16129838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule optical tweezers reveals folding steps of the domain swapping mechanism of a protein.
    Bustamante A; Rivera R; Floor M; Babul J; Baez M
    Biophys J; 2021 Nov; 120(21):4809-4818. PubMed ID: 34555362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico energetic and molecular dynamic simulations studies demonstrate potential effect of the point mutations with implications for protein engineering in BDNF.
    Datta Darshan VM; Arumugam N; Almansour AI; Sivaramakrishnan V; Kanchi S
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132247. PubMed ID: 38750847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of monomeric protein L to an obligate dimer by computational protein design.
    Kuhlman B; O'Neill JW; Kim DE; Zhang KY; Baker D
    Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10687-91. PubMed ID: 11526208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of monomeric IL37 variants guided by stability and dynamical analyses of IL37 dimers.
    Sardag I; Duvenci ZS; Belkaya S; Timucin E
    Comput Struct Biotechnol J; 2024 Dec; 23():1854-1863. PubMed ID: 38882680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations suggest stabilizing mutations in a de novo designed α/β protein.
    Gill M; McCully ME
    Protein Eng Des Sel; 2019 Dec; 32(7):317-329. PubMed ID: 32086513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information.
    Upadhyay AK; Sowdhamini R
    PLoS One; 2016; 11(7):e0159627. PubMed ID: 27467780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of enzyme specificity by computational loop remodeling and design.
    Murphy PM; Bolduc JM; Gallaher JL; Stoddard BL; Baker D
    Proc Natl Acad Sci U S A; 2009 Jun; 106(23):9215-20. PubMed ID: 19470646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms.
    Stepanenko OV; Roginskii DO; Stepanenko OV; Kuznetsova IM; Uversky VN; Turoverov KK
    PeerJ; 2016; 4():e1574. PubMed ID: 27114857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Protein Dimer Structures Using MELD × MD.
    Brini E; Kozakov D; Dill KA
    J Chem Theory Comput; 2019 May; 15(5):3381-3389. PubMed ID: 30908034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational remodeling of an enzyme conformational landscape for altered substrate selectivity.
    St-Jacques AD; Rodriguez JM; Eason MG; Foster SM; Khan ST; Damry AM; Goto NK; Thompson MC; Chica RA
    Nat Commun; 2023 Sep; 14(1):6058. PubMed ID: 37770431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Point Mutations on PR65 Conformational Adaptability: Insights from Nanoaperture Optical Tweezer Experiments and Molecular Simulations.
    Bahar I; Banerjee A; Mathew S; Naqvi M; Yilmaz S; Zachoropoulou M; Doruker P; Kumita J; Yang SH; Gur M; Itzhaki L; Gordon R
    Res Sq; 2023 Nov; ():. PubMed ID: 38014259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic Analysis of an Engineered Enzyme that Catalyzes the Formose Reaction.
    Poust S; Piety J; Bar-Even A; Louw C; Baker D; Keasling JD; Siegel JB
    Chembiochem; 2015 Sep; 16(13):1950-1954. PubMed ID: 26109266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.