These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 26102007)
21. Discovery and molecular modeling of novel 1-indolyl acetate--5-nitroimidazole targeting tubulin polymerization as antiproliferative agents. Duan YT; Sang YL; Makawana JA; Teraiya SB; Yao YF; Tang DJ; Tao XX; Zhu HL Eur J Med Chem; 2014 Oct; 85():341-51. PubMed ID: 25105922 [TBL] [Abstract][Full Text] [Related]
22. Synthesis, cytotoxicity, docking study, and tubulin polymerization inhibitory activity of novel 1-(3,4-dimethoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazole-3-carboxanilides. Aly OM; Beshr EA; Maklad RM; Mustafa M; Gamal-Eldeen AM Arch Pharm (Weinheim); 2014 Sep; 347(9):658-67. PubMed ID: 24996189 [TBL] [Abstract][Full Text] [Related]
23. α-Cyperone of Cyperus rotundus is an effective candidate for reduction of inflammation by destabilization of microtubule fibers in brain. Azimi A; Ghaffari SM; Riazi GH; Arab SS; Tavakol MM; Pooyan S J Ethnopharmacol; 2016 Dec; 194():219-227. PubMed ID: 27353867 [TBL] [Abstract][Full Text] [Related]
25. The binding sites of microtubule-stabilizing agents. Field JJ; Díaz JF; Miller JH Chem Biol; 2013 Mar; 20(3):301-15. PubMed ID: 23521789 [TBL] [Abstract][Full Text] [Related]
26. Reduction of metabolic and behavioral signs of acute stress in male Wistar rats by saffron water extract and its constituent safranal. Hooshmandi Z; Rohani AH; Eidi A; Fatahi Z; Golmanesh L; Sahraei H Pharm Biol; 2011 Sep; 49(9):947-54. PubMed ID: 21592014 [TBL] [Abstract][Full Text] [Related]
27. Safranal and its analogs inhibit Escherichia coli ATP synthase and cell growth. Liu M; Amini A; Ahmad Z Int J Biol Macromol; 2017 Feb; 95():145-152. PubMed ID: 27865956 [TBL] [Abstract][Full Text] [Related]
28. Integrating docking and molecular dynamics approaches for a series of proline-based 2,5-diketopiperazines as novel αβ-tubulin inhibitors. Fani N; Bordbar AK; Ghayeb Y; Sepehri S J Biomol Struct Dyn; 2015; 33(10):2285-95. PubMed ID: 25616934 [TBL] [Abstract][Full Text] [Related]
29. Structure of 4'-demethylepipodophyllotoxin in complex with tubulin provides a rationale for drug design. Niu L; Wang Y; Wang C; Wang Y; Jiang X; Ma L; Wu C; Yu Y; Chen Q Biochem Biophys Res Commun; 2017 Nov; 493(1):718-722. PubMed ID: 28864414 [TBL] [Abstract][Full Text] [Related]
30. Indicine N-oxide binds to tubulin at a distinct site and inhibits the assembly of microtubules: a mechanism for its cytotoxic activity. Appadurai P; Rathinasamy K Toxicol Lett; 2014 Feb; 225(1):66-77. PubMed ID: 24300171 [TBL] [Abstract][Full Text] [Related]
31. Electrostatic contributions to colchicine binding within tubulin isotypes. Huzil JT; Barakat K; Tuszynski JA Electromagn Biol Med; 2009; 28(4):355-64. PubMed ID: 20017626 [TBL] [Abstract][Full Text] [Related]
34. Interaction of safranal and picrocrocin with ctDNA and their preferential mechanisms of binding to GC- and AT-rich oligonucleotides. Hoshyar R; Bathaie SZ; Ashrafi M DNA Cell Biol; 2008 Dec; 27(12):665-73. PubMed ID: 19040376 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of the effect of the chiral centers of Taxol on binding to β-tubulin: A docking and molecular dynamics simulation study. Ghadari R; Alavi FS; Zahedi M Comput Biol Chem; 2015 Jun; 56():33-40. PubMed ID: 25854803 [TBL] [Abstract][Full Text] [Related]
36. Double-sides sticking mechanism of vinblastine interacting with α,β-tubulin to get activity against cancer cells. Zhou X; Xu Z; Li A; Zhang Z; Xu S J Biomol Struct Dyn; 2019 Sep; 37(15):4080-4091. PubMed ID: 30451089 [TBL] [Abstract][Full Text] [Related]
37. Design, synthesis, biological evaluation and molecular modeling of 1,3,4-oxadiazoline analogs of combretastatin-A4 as novel antitubulin agents. Hu Y; Lu X; Chen K; Yan R; Li QS; Zhu HL Bioorg Med Chem; 2012 Jan; 20(2):903-9. PubMed ID: 22192936 [TBL] [Abstract][Full Text] [Related]
39. Computational design of Tryprostatin-A derivatives as novel αβ-tubulin inhibitors. Fani N; Bordbar AK; Ghayeb Y; Sepehri S J Biomol Struct Dyn; 2015; 33(3):471-86. PubMed ID: 24606044 [TBL] [Abstract][Full Text] [Related]
40. Mechanism of action of N-phenyl-N'-(2-chloroethyl)ureas in the colchicine-binding site at the interface between alpha- and beta-tubulin. Fortin S; Wei L; Moreau E; Labrie P; Petitclerc E; Kotra LP; C-Gaudreault R Bioorg Med Chem; 2009 May; 17(10):3690-7. PubMed ID: 19398206 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]