BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

707 related articles for article (PubMed ID: 26102333)

  • 1. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin.
    Chen MC; Ling MH; Kusuma SJ
    Acta Biomater; 2015 Sep; 24():106-16. PubMed ID: 26102333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats.
    Ling MH; Chen MC
    Acta Biomater; 2013 Nov; 9(11):8952-61. PubMed ID: 23816646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of composite microneedles integrated with insulin-loaded CaCO
    Liu D; Yu B; Jiang G; Yu W; Zhang Y; Xu B
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():180-188. PubMed ID: 29853081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapidly separating microneedles for transdermal drug delivery.
    Zhu DD; Wang QL; Liu XB; Guo XD
    Acta Biomater; 2016 Sep; 41():312-9. PubMed ID: 27265152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Rapidly Separable Microneedles for Transdermal Delivery of Metformin on Diabetic Rats.
    Liu T; Jiang G; Song G; Sun Y; Zhang X; Zeng Z
    J Pharm Sci; 2021 Aug; 110(8):3004-3010. PubMed ID: 33878323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice.
    Lee IC; Lin WM; Shu JC; Tsai SW; Chen CH; Tsai MT
    J Biomed Mater Res A; 2017 Jan; 105(1):84-93. PubMed ID: 27539509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery.
    Migalska K; Morrow DI; Garland MJ; Thakur R; Woolfson AD; Donnelly RF
    Pharm Res; 2011 Aug; 28(8):1919-30. PubMed ID: 21437789
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Tort S; Mutlu Agardan NB; Han D; Steckl AJ
    J Microencapsul; 2020 Nov; 37(7):517-527. PubMed ID: 32783663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin.
    Yu W; Jiang G; Liu D; Li L; Chen H; Liu Y; Huang Q; Tong Z; Yao J; Kong X
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():725-734. PubMed ID: 27987766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo assessment of polymer microneedles for controlled transdermal drug delivery.
    Chen BZ; Ashfaq M; Zhang XP; Zhang JN; Guo XD
    J Drug Target; 2018 Sep; 26(8):720-729. PubMed ID: 29301433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin.
    Seong KY; Seo MS; Hwang DY; O'Cearbhaill ED; Sreenan S; Karp JM; Yang SY
    J Control Release; 2017 Nov; 265():48-56. PubMed ID: 28344013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart microneedle patches for rapid, and painless transdermal insulin delivery.
    Wang Y; Wang H; Zhu XX; Guan Y; Zhang Y
    J Mater Chem B; 2020 Oct; 8(40):9335-9342. PubMed ID: 32969458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of novel-shaped microneedles to overcome the disadvantages of solid microneedles for the transdermal delivery of insulin.
    Mizuno Y; Takasawa K; Hanada T; Nakamura K; Yamada K; Tsubaki H; Hara M; Tashiro Y; Matsuo M; Ito T; Hikima T
    Biomed Microdevices; 2021 Jul; 23(3):38. PubMed ID: 34287717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly-γ-Glutamate microneedles as transdermal immunomodulators for ameliorating atopic dermatitis-like skin lesions in Nc/Nga mice.
    Chen MC; Chen CS; Wu YW; Yang YY
    Acta Biomater; 2020 Sep; 114():183-192. PubMed ID: 32688089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin.
    Yu W; Jiang G; Zhang Y; Liu D; Xu B; Zhou J
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():187-196. PubMed ID: 28866156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery.
    Lau S; Fei J; Liu H; Chen W; Liu R
    J Control Release; 2017 Nov; 265():113-119. PubMed ID: 27574991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of separable microneedles with phase change coating for NIR-triggered transdermal delivery of metformin on diabetic rats.
    Liu T; Jiang G; Song G; Zhu J; Yang Y
    Biomed Microdevices; 2020 Jan; 22(1):12. PubMed ID: 31912303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new paradigm for numerical simulation of microneedle-based drug delivery aided by histology of microneedle-pierced skin.
    Han T; Das DB
    J Pharm Sci; 2015 Jun; 104(6):1993-2007. PubMed ID: 25821048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery.
    He MC; Chen BZ; Ashfaq M; Guo XD
    Drug Deliv Transl Res; 2018 Oct; 8(5):1034-1042. PubMed ID: 29845379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.